http://iet.metastore.ingenta.com
1887

Output consensus of multi-agent systems with delayed and sampled-data

Output consensus of multi-agent systems with delayed and sampled-data

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the output consensus problem of high-order leader-following multi-agent systems with unknown non-linear dynamics, in which the delayed and sampled outputs of the system are the only available data. The unknown non-linear dynamics are assumed to satisfy the Lipschitz condition and the interconnected topologies are assumed to be undirected and connected. A distributed observer-based output feedback controller is proposed for the system to reach output consensus. Both of the bounds of the allowable delay and sampling period are also obtained. Stability analysis shows that the considered systems are globally exponentially stable under the output feedback controller. Finally, a simulation example is given to validate our theoretical results.

References

    1. 1)
      • 1. Fax, J.A., Murray, R.M.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14651476.
    2. 2)
      • 2. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    3. 3)
      • 3. Olfati-Saber, R., Fax, J., Murray, R.M.: ‘Consensus and cooperation in multi-agent networked systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    4. 4)
      • 4. Ren, W., Beard, R.W.: ‘Consensus seeking in multi-agent systems under dynamically changing interaction topologies’, Automatica, 2005, 50, (5), pp. 655661.
    5. 5)
      • 5. Ren, W.: ‘Multi-vehicle consensus with a time-varying reference state’, Syst. Control Lett., 2007, 56, (7–8), pp. 474483.
    6. 6)
      • 6. Xiao, F., Wang, L.: ‘Consensus protocols for discrete-time multi-agent systems with time-varying delays’, Automatica, 2008, 44, (10), pp. 25772582.
    7. 7)
      • 7. Lin, P., Jia, Y.M.: ‘Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies’, Automatica, 2009, 45, (9), pp. 21542158.
    8. 8)
      • 8. Zhu, W., Cheng, D.Z.: ‘Leader-following consensus of second-order agents with multiple time-varying delays’, Automatica, 2010, 46, (12), pp. 19941999.
    9. 9)
      • 9. Li, S.H., Du, H.B., Lin, X.Z.: ‘Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics’, Automatica, 2011, 47, (8), pp. 17061712.
    10. 10)
      • 10. Cao, Y.C., Ren, W.: ‘Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics’, Automatica, 2014, 50, (10), pp. 26482656.
    11. 11)
      • 11. Yu, H., Shen, Y.J., Xia, X.H.: ‘Adaptive finite-time consensus in multi-agent networks’, Syst. Control Lett., 2013, 62, (10), pp. 880889.
    12. 12)
      • 12. Wang, L., Xiao, F.: ‘Finite-time consensus problems for networks of dynamic agents’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 950955.
    13. 13)
      • 13. Khoo, S., Xie, L., Man, Z.: ‘Robust finite-time consensus tracking algorithm for multirobot systems’, IEEE/ASME Trans. Mechatronics, 2009, 14, (2), pp. 219228.
    14. 14)
      • 14. Tahbaz-Salehi, A., Jadbabaie, A.: ‘A necessary and sufficient condition for consensus over random networks’, IEEE Trans. Autom. Control, 2008, 53, (3), pp. 791795.
    15. 15)
      • 15. Tang, Y., Gao, H.J., Zhang, W.B., et al: ‘Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses’, Automatica, 2015, 53, pp. 346354.
    16. 16)
      • 16. Chen, W.S., Li, X.B., Jiao, L.C.: ‘Quantized consensus of second-order continuous-time multi-agent systems with a directed topology via sampled data’, Automatica, 2013, 49, (7), pp. 22362242.
    17. 17)
      • 17. Wang, Y., Wu, Q.H., Wang, Y.Q., et al: ‘Quantized consensus on first-order integrator networks’, Syst. Control Lett., 2012, 61, (12), pp. 11451150.
    18. 18)
      • 18. Li, D.Q., Liu, Q.P., Wang, X.F., et al: ‘Quantized consensus over directed networks with switching topologies’, Syst. Control Lett., 2014, 65, (65), pp. 1322.
    19. 19)
      • 19. Chen, J., Guan, Z.H., He, D.X., et al: ‘Multi-consensus for second-order multi-agent systems based on sampled position information’, IET Control Theory Appl., 2015, 9, (3), pp. 358366.
    20. 20)
      • 20. Yan, H.C., Qian, F.F., Zhang, H., et al: ‘H Fault detection for networked mechanical spring-mass systems with incomplete information’, IEEE Trans. Ind. Electron., 2016, 63, (9), pp. 56225631.
    21. 21)
      • 21. Yan, H.C., Qian, F.F., Yang, F.W., et al: ‘H filtering for nonlinear networked systems with randomly occurring distributed delays, missing measurements and sensor saturation’, Inf. Sci., 2015, 370–371, pp. 772782.
    22. 22)
      • 22. Guan, Z.H., Liu, Z.W., Feng, G., et al: ‘Impulsive consensus algorithms for second-order multi-agent networks with sampled information’, Automatica, 2012, 48, (7), pp. 13971404.
    23. 23)
      • 23. Wang, Y.W., Yang, W., Xiao, J.W., et al: ‘Impulsive multisynchronization of coupled multistable neural networks with time-varying delay’, IEEE Trans. Neural Netw. Learn. Syst., 2016, PP, (99), pp. 112.
    24. 24)
      • 24. Wang, Y.W., Yi, J.W.: ‘Consensus in second-order multi-agent systems via impulsive control using position-only information with heterogeneous delays’, IET Control Theory Appl., 2015, 9, (3), pp. 336345.
    25. 25)
      • 25. Wang, Y.W., Bian, T., Xiao, J.W., et al: ‘Global synchronization of complex dynamical networks through digital communication with limited data rate’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (10), pp. 24872499.
    26. 26)
      • 26. Yu, H., Antsaklis, J.P.: ‘Output synchronization of networked passive systems with event-driven communication’, IEEE Trans. Autom. Control, 2014, 59, (3), pp. 750756.
    27. 27)
      • 27. Yu, W.W., Zhou, L., Yu, X.H.: ‘Consensus in multi-agent systems with second-order dynamics and sampled data’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 21372146.
    28. 28)
      • 28. Huang, N., Duan, Z.S., Chen, G.R.: ‘Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data’, Automatica, 2016, 63, pp. 148155.
    29. 29)
      • 29. Liu, T., Cao, M., Hill, J.D.: ‘Distributed event-triggered control for output synchronization of dynamical networks with non-identical nodes’. 53rd IEEE Conf. on Decision and Control, 2014, vol. 15–17, pp. 35543559.
    30. 30)
      • 30. Zhang, X., Chen, M.Y., Wang, L., et al: ‘Connection-graph-based event-triggered output consensus in multi-agent systems with time-varying couplings’, IET Control Theory Appl., 2015, 9, (1), pp. 19.
    31. 31)
      • 31. Hu, W.F., Liu, L.: ‘Cooperative output regulation of heterogeneous linear multi-agent systems by event-triggered control’, IEEE Trans. Cybern., 2016, 47, (1), pp. 105116.
    32. 32)
      • 32. Li, Z.K., Duan, Z.S., Chen, G.R., et al: ‘Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint’, IEEE Trans. Circuits Syst., 2010, 57, (1), pp. 213224.
    33. 33)
      • 33. Yu, W.W., Zheng, W.X., Chen, G.R., et al: ‘Second-order consensus in multi-agent dynamical systems with sampled position data’, Automatica, 2011, 47, (7), pp. 14961503.
    34. 34)
      • 34. Riccardo, M., Patrizio, T.: ‘Nonlinear control design: geometric, adaptive and robust’ ; (Prentice Hall International (UK) Limited, London, 1995).
    35. 35)
      • 35. Wang, X.H.: ‘Leader-follower consensus for a class of nonlinear multi-agent systems’, Int. J. Control Autom. Syst., 2012, 10, (1), pp. 2735.
    36. 36)
      • 36. Su, Y., Huang, J.: ‘Global robust output regulation for nonlinear multiagent systems in strict feedback form’. 12th Int. Conf. on Control Automation Robotics and Vision, 2012, pp. 436441.
    37. 37)
      • 37. Yoo, S.J.: ‘Distributed adaptive containment control of uncertain nonlinear multi-agent systems in strict-feedback form’, Automatica, 2013, 49, (7), pp. 21452153.
    38. 38)
      • 38. Zhang, X.F., Liu, L., Feng, G.: ‘Leader-follower consensus of time-varying nonlinear multi-agent systems’, Automatica, 2015, 52, pp. 814.
    39. 39)
      • 39. Shen, Y.J., Zhang, D.Y, Xia, X.H.: ‘Continuous output feedback stabilization for nonlinear systems based on sampled and delayed output measurements’, Int. J. Robust Nonlinear Control, 2015, 26, (14), pp. 30753087.
    40. 40)
      • 40. Godsil, C.D., Royle, G.: ‘Algebraic graph theory’ (Springer Press, New York, 2001).
    41. 41)
      • 41. Liu, Y., Wang, Z., Liu, X.: ‘On global exponential stability of generalized stochastic neural networks with mixed time-delays’, Neurocomputing, 2006, 70, (1–3), pp. 314326.
    42. 42)
      • 42. Hu, Y.X., Yu, W.W., Xuan, Q., et al: ‘Consensus of multi-agent systems in the cooperation competition network with inherent nonlinear dynamics: a time-delayed control approach’, Neurocomputing, 2015, 158, pp. 134143.
    43. 43)
      • 43. Miao, G.Y., Wang, Z., Ma, Q., et al: ‘Consensus of second-order multi-agent systems with nonlinear dynamics and time delays’, Neural Comput. Appl., 2013, 23, pp. 761767.
    44. 44)
      • 44. Qian, Y.F., Wu, X.Q., Lu, J.H., et al: ‘Consensus of second-order multi-agent systems with nonlinear dynamics and time delay’, Nonlinear Dyn., 2014, 78, pp. 495503.
    45. 45)
      • 45. Zhang, W.T., Kou, K.L., Lou, J.G., et al: ‘Observer based consensus for nonlinear multi-agent systems with communication failures’, Neurocomputing, 2016, 173, pp. 10341043.
    46. 46)
      • 46. Xu, X.L., Chen, S.Y., Gao, L.X.: ‘Observer-based consensus tracking for second-order leader-following nonlinear multi-agent systems with adaptive coupling parameter design’, Neurocomputing, 2015, 156, pp. 297305.
    47. 47)
      • 47. Yang, Y., Yue, D., Dou, C.X.: ‘Distributed adaptive output consensus control of a class of heterogeneous multi-agent systems under switching directed topologies’, Inf. Sci., 2016, 345, pp. 294312.
    48. 48)
      • 48. Wen, G.H., Duan, Z.S., Yu, W.W., et al: ‘Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: a delayed-input approach’, Int. J. Robust Nonlinear Control, 2013, 23, pp. 602619.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1162
Loading

Related content

content/journals/10.1049/iet-cta.2016.1162
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address