Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Finite-horizon bounded synchronisation and state estimation for discrete-time complex networks: local performance analysis

Finite-horizon bounded synchronisation and state estimation for discrete-time complex networks: local performance analysis

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the finite-horizon bounded synchronisation and state estimation for the discrete-time complex networks with missing measurements based on the local performance analysis. First, a new local description of the bounded synchronisation performance index is proposed, which considers only the synchronisation errors among neighbours. In addition, a more general sector-bounded condition is presented, where the parameter matrices are different for different node. Next, by establishing the vector dissipativity-like for the complex network dynamics, the synchronisation criterion is derived in term of the locally coupled conditions for each node. These conditions implemented in a cooperative manner can judge whether the complex network reaches synchronisation. Similarly, the existence conditions for the estimator on each node are obtained, and then the estimator parameters are designed via the recursive linear matrix inequalities. Notably, these conditions on each node by cooperation among neighbours can achieve the desirable performance index. The distinctive features of the authors' algorithms are low complexity, scalability, and distributed execution. At last, two numerical examples are utilised to verify the effectiveness and applicability of the proposed algorithms.

References

    1. 1)
      • 2. Fu, Z., He, X., Huang, T., et al: ‘A distributed continuous time consensus algorithm for maximize social welfare in micro grid’, J. Franklin Inst., 2016, 353, pp. 39663984.
    2. 2)
      • 3. Barabáasi, A., Albert, R.: ‘Emergence of scaling in random networks’, Science, 1999, 286, (5439), pp. 509512.
    3. 3)
      • 40. Zou, L., Wang, Z., Gao, H.: ‘Event-triggered state estimation for complex networks with mixed time delays via sampled data information: the continuous-time case’, IEEE Trans. Cybern., 2015, 45, (12), pp. 28042815.
    4. 4)
      • 16. Rakkiyappan, R., Dharani, S., Zhu, Q.: ‘Stochastic sampled-data H synchronization of coupled neutral-type delay partial differential systems’, J. Franklin Inst., 2015, 352, (10), pp. 44804502.
    5. 5)
      • 8. Wu, X., Lu, H.: ‘Generalized projective synchronization between two different general complex dynamical networks with delayed coupling’, Phys. Lett. A, 2010, 374, pp. 39323941.
    6. 6)
      • 11. Balasubramaniam, P., Banu, L.: ‘Synchronization criteria of discrete-time complex networks with time-varying delays and parameter uncertainties’, Cogn. Neurodyn., 2014, 8, (3), pp. 199215.
    7. 7)
      • 14. He, W., Qian, F., Lam, J., et al: ‘Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: error estimation, optimization and design’, Automatica, 2015, 62, pp. 249262.
    8. 8)
      • 19. Mathiyalagan, K., Anbuvithya, R., Sakthivel, R., et al: ‘Non-fragile H synchronization of memristor-based neural networks using passivity theory’, Neural Netw., 2016, 74, pp. 85100.
    9. 9)
      • 15. Yu, W., Chen, G., Lü, J.: ‘On pinning synchronization of complex dynamical networks’, Automatica, 2009, 45, pp. 429435.
    10. 10)
      • 36. Ding, D., Wang, Z., Shen, B., et al: ‘H state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (5), pp. 725736.
    11. 11)
      • 30. Li, Q., Shen, B., Liu, Y., et al: ‘Event-triggered H state estimation for discrete-time stochastic genetic regulatory networks with Markovian jumping parameters and time-varying delays’, Neurocomputing, 2016, 174, pp. 912920.
    12. 12)
      • 38. Huang, H., Feng, G., Cao, J.: ‘Robust state estimation for uncertain neural networks with time-varying delay’, IEEE Trans. Neural Netw., 2008, 19, (8), pp. 13291339.
    13. 13)
      • 35. Wei, G., Wang, Z., Shu, H.: ‘Robust filtering with stochastic nonlinearities and multiple missing measurements’, Automatica, 2009, 45, (3), pp. 836841.
    14. 14)
      • 26. Haddad, W., Chellabolna, V., Nersesov, S.: ‘Vector dissipativity theory and stability of feedback interconnections for large-scale non-linear dynamical systems’, Int. J. Control, 2004, 77, (10), pp. 907919.
    15. 15)
      • 31. Zhang, J., Ma, L., Liu, Y.: ‘Passivity analysis for discrete-time neural networks with mixed time-delays and randomly occurring quantization effects’, Neurocomputing, 2016, 216, pp. 657665.
    16. 16)
      • 17. Rakkiyappan, R., Sivaranjani, K.: ‘Sampled-data synchronization and state estimation for nonlinear singularly perturbed complex networks with time-delays’, Nonlinear Dyn., 2016, 84, (3), pp. 16231636.
    17. 17)
      • 1. Boccaletti, S., Latora, V., Moreno, Y.: ‘Complex networks: structure and dynamics’, Phys. Rep., 2006, 424, pp. 175308.
    18. 18)
      • 6. Liang, J., Wang, Z., Liu, X.: ‘Exponential synchronization of stochastic delayed discrete-time complex networks’, Nonlinear Dyn., 2008, 53, (1-2), pp. 153165.
    19. 19)
      • 39. Liu, Y., Wang, Z., Liang, J., et al: ‘Synchronization and state estimation for discrete-time complex networks with distributed delays’, IEEE Trans. Syst. Man Cybern., 2008, 38, (5), pp. 13141325.
    20. 20)
      • 10. Shen, B., Wang, Z., Liu, X.: ‘Bounded H synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon’, IEEE Trans. Neural Netw., 2011, 22, (1), pp. 145157.
    21. 21)
      • 25. Chen, Y., Yu, W., Tan, S., et al: ‘Synchronizing nonlinear complex networks via switching disconnected topology’, Automatica, 2016, 70, pp. 189194.
    22. 22)
      • 23. Lu, W., Chen, T.: ‘New approach to synchronization analysis of linearly coupled ordinary differential systems’, Physica D, 2006, 213, (2), pp. 214230.
    23. 23)
      • 22. Kaviarasan, B., Sakthivel, R., Lim, Y.: ‘Synchronization of complex dynamical networks with uncertain inner coupling and successive delays based on passivity theory’, Neurocomputing, 2016, 186, pp. 127138.
    24. 24)
      • 20. Wang, Z., Wang, Y., Liu, Y.: ‘Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays’, IEEE Trans. Neural Netw., 2010, 21, (1), pp. 1125.
    25. 25)
      • 12. Chen, B., Chiang, C., Nguang, S.: ‘Robust H synchronization design of nonlinear coupled network via fuzzy interpolation method’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, pp. 349362.
    26. 26)
      • 33. Liang, J., Wang, Z., Liu, X.: ‘State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case’, IEEE Trans. Neural Netw., 2009, 20, (5), pp. 781793.
    27. 27)
      • 24. Liu, B., Lu, W., Chen, T.: ‘Synchronization in complex networks with stochastically switching coupling structures’, IEEE Trans. Autom. Control, 2012, 57, (3), pp. 754760.
    28. 28)
      • 4. Strogatz, S.: ‘Exploring complex networks’, Nature, 2001, 410, (6825), pp. 268276.
    29. 29)
      • 5. Lu, J., Ho, D., Cao, J., et al: ‘Exponential synchronization of linearly coupled neural networks with impulsive disturbances’, IEEE Trans. Neural Netw., 2011, 22, (2), pp. 329335.
    30. 30)
      • 13. Wu, K., Li, C., Chen, B., et al: ‘Robust H synchronization of coupled partial differential systems with spatial coupling delay’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2013, 60, (7), pp. 451455.
    31. 31)
      • 7. Qin, J., Gao, H., Zheng, W.: ‘Exponential synchronization of complex networks of linear systems and nonlinear oscillators: a unified analysis’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (3), pp. 510521.
    32. 32)
      • 27. Ding, D., Wang, Z., Ho, D., et al: ‘Observer-based event-triggering consensus control for multi-agent systems with lossy sensors and cyber attacks’, IEEE Trans. Cybern., DOI: 10.1109/TCYB.2016.2582802.
    33. 33)
      • 32. Liu, D., Liu, Y., Alsaadi, F.: ‘A new framework for output feedback controller design for a class of discrete-time stochastic nonlinear system with quantization and missing measurement’, Int. J. Gener. Syst., 2016, 45, (5), pp. 517531.
    34. 34)
      • 18. Anbuvithya, R., Mathiyalagan, K., Sakthivel, R., et al: ‘Non-fragile synchronization of memristive BAM networks with random feedback gain fluctuations’, Commun. Nonlinear Sci., 2015, 29, pp. 427440.
    35. 35)
      • 28. Ding, D., Wei, G., Zhang, S., et al: ‘On scheduling of deception attacks for discrete-time networked systems equipped with attack detectors’, Neurocomputing, 2017, 219, pp. 99106.
    36. 36)
      • 34. Shen, B., Wang, Z., Ding, D., et al: ‘H state estimation for complex networks with uncertain inner coupling and incomplete measurements’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (12), pp. 20272037.
    37. 37)
      • 9. Ma, Q., Wang, Z., Lu, J.: ‘Finite-time synchronization for complex dynamical networks with time-varying delays’, Nonlinear Dyn., 2012, 70, pp. 841848.
    38. 38)
      • 29. Dong, H., Wang, Z., Ding, S., et al: ‘Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying systems’, Automatica, 2014, 50, (12), pp. 31823189.
    39. 39)
      • 21. Yang, X., Cao, J., Lu, J.: ‘Synchronization of randomly coupled neural networks with Markovian jumping and time-delay’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (2), pp. 363376.
    40. 40)
      • 37. Hu, J., Wang, Z., Liu, S., et al: ‘A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements’, Automatica, 2016, 64, pp. 155162.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1161
Loading

Related content

content/journals/10.1049/iet-cta.2016.1161
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address