access icon free Finite-time robust fault-tolerant control against actuator faults and saturations

The finite-time robust fault-tolerant control problem is addressed for a class of perturbed linear systems with actuator faults and input amplitude saturations. A compensation control strategy is proposed to eliminate the effects of actuator faults and non-linear disturbance-like inputs within a finite-time, as well as to ensure the control inputs be limited within a desired constraint. Based on Lyapunov stability theory, it is shown that system states can converge to a small region in the cases of actuator faults and saturations by choosing suitable control parameters. Some relationships among convergence bounds, actuator faults and amplitude limits, as well as the control parameters are studied deeply and illustrated explicitly with formulas. Simulations of a linearised F-18 longitudinal dynamical control model are given to verify the effectiveness of the proposed method.

Inspec keywords: aircraft control; compensation; fault tolerant control; robust control; nonlinear control systems; linearisation techniques; perturbation techniques; military aircraft; Lyapunov methods; actuators; linear systems; time-varying systems

Other keywords: Lyapunov stability theory; input amplitude saturations; finite-time robust fault-tolerant control problem; nonlinear disturbance-like inputs; perturbed linear systems; linearised F-18 longitudinal dynamical control model; control parameters; convergence bounds; compensation control strategy; actuator fault effect elimination

Subjects: Actuating and final control devices; Nonlinear control systems; Linear control systems; Military control systems; Stability in control theory; Aerospace control; Time-varying control systems

References

    1. 1)
      • 18. Hu, T., Lin, Z., Chen, B.M.: ‘An analysis and design method for linear systems subject to actuator saturation and disturbance’, Automatica, 2002, 38, (2), pp. 351359.
    2. 2)
      • 8. Jin, X.Z.Robust adaptive switching fault-tolerant control of a class of uncertain systems against actuator faults’, Math. Problems Eng., 2013, 2013, 9 pages, Article ID 852502.
    3. 3)
      • 30. Xiao, B., Hu, Q., Shi, P.: ‘Attitude stabilization of spacecrafts under actuator saturation and partial loss of control effectiveness’, IEEE Trans. Control Syst. Technol., 2013, 21, (6), pp. 22512263.
    4. 4)
      • 27. Kahveci, N.E., Ioannou, P.A.: ‘Indirect adaptive control for systems with input rate saturation’. 2008 American Control Conf., Seattle, Washington, USA, 2008, pp. 33963401.
    5. 5)
      • 19. Guan, W., Yang, G.-H.: ‘New controller design method for continuous-time systems with state saturation’, IET Control Theory Appl., 2010, 4, (10), pp. 18891897.
    6. 6)
      • 9. Ye, D., Zhao, X., Cao, B.: ‘Distributed adaptive fault-tolerant consensus tracking of multi-agent systems against time-varying actuator faults’, IET Control Theory Appl., 2016, 10, (5), pp. 554563.
    7. 7)
      • 37. Hardy, G., Littlewood, J., Polya, G.: ‘Inequalities’ (Cambridge University Press, Cambridge, 1952).
    8. 8)
      • 14. Xiao, B., Hu, Q., Zhang, Y.: ‘Finite-Time attitude tracking of spacecraft with fault-tolerant capability’, IEEE Trans. Control Syst. Technol., 2015, 23, pp. 13381350.
    9. 9)
      • 26. Zhou, B., Zheng, W., Duan, G.R.: ‘An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation’, Automatica, 2011, 47, (2), pp. 306315.
    10. 10)
      • 13. Basin, M., Li, L., Krueger, M., et al: ‘Finite-time-convergent fault-tolerant control for dynamical systems and its experimental verification for DTS200 three-tank system’, IET Control Theory Appl., 2015, 9, pp. 16701675.
    11. 11)
      • 25. Li, Y., Lin, Z.: ‘Saturation-based switching anti-windup design for linear systems with nested input saturation’, Automatica, 2014, 50, (11), pp. 28882896.
    12. 12)
      • 1. Veillette, R.J., Medanic, J.V., Perkins, W.R.: ‘Design of reliable control systems’, IEEE Trans. Autom. Control, 1992, 37, (3), pp. 290304.
    13. 13)
      • 2. Yang, G.H., Wang, J.L., Soh, Y.C.: ‘Reliable H controller design for linear systems’, Automatica, 2001, 37, (5), pp. 717725.
    14. 14)
      • 7. Li, X.-J., Yang, G.-H.: ‘Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures’, IET Control Theory Appl., 2012, 6, (10), pp. 15441551.
    15. 15)
      • 29. Yuan, R., Tan, X., Fan, G., et al: ‘Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations’, Neurocomputing, 2014, 125, pp. 7280.
    16. 16)
      • 20. Scarciotti, G., Astolfi, A.: ‘Approximate finite-horizon optimal control for input-affine nonlinear systems with input constraints’, J. Control Decision, 2014, 1, (2), pp. 149165.
    17. 17)
      • 5. Tao, G.: ‘Direct adaptive actuator failure compensation control: a tutorial’, J. Control Decision, 2014, 1, (1), pp. 75101.
    18. 18)
      • 21. Gao, S., Dong, H., Chen, Y., et al: ‘Approximation-based robust adaptive automatic train control: an approach for actuator saturation’, IEEE Trans. Intell. Transport. Syst., 2013, 14, (4), pp. 17331742.
    19. 19)
      • 11. Jin, X.: ‘Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints’, Automatica, 2016, 68, pp. 228236.
    20. 20)
      • 31. Bustan, D., Pariz, N., Sani, S.K.H.: ‘Robust fault-tolerant tracking control design for spacecraft under control input saturation’, ISA Trans., 2014, 53, (4), pp. 10731080.
    21. 21)
      • 23. Nguyen, T., Jabbari, F.: ‘Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation’, Automatica, 2000, 36, (9), pp. 13391346.
    22. 22)
      • 22. Zhu, Z., Xia, Y., Fu, M.: ‘Adaptive sliding mode control for attitude stabilization with actuator saturation’, IEEE Trans. Indust. Electron., 2011, 58, (10), pp. 48984907.
    23. 23)
      • 12. Gao, M.-Z., Cai, G.-P., Nan, Y.: ‘Finite-time fault-tolerant control for flutter of wing’, Control Eng. Practice, 2016, 51, pp. 2647.
    24. 24)
      • 15. Zhang, A., Hu, Q., Friswell, M.I.: ‘Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults’, IET Control Theory Appl., 2013, 7, pp. 20072020.
    25. 25)
      • 35. Fossen, T.: ‘Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles’ (Marine Cybernetics, Trondheim, Norway, 2002).
    26. 26)
      • 4. Fekih, A.: ‘Fault-tolerant flight control design for effective and reliable aircraft systems’, J. Control Decision, 2014, 1, (4), pp. 299316.
    27. 27)
      • 17. Lu, K., Xia, Y.: ‘Finite-time fault-tolerant control for rigid spacecraft with actuator saturations’, IET Control Theory Appl., 2013, 7, pp. 15291539.
    28. 28)
      • 3. Zhang, Y., Jiang, J.: ‘Bibliographical review on reconfigurable fault-tolerant control systems’, Annu. Rev. Control, 2008, 32, (2), pp. 229252.
    29. 29)
      • 32. Zuo, Z., Ho, D.W.C., Wang, Y.: ‘Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation’, Automatica, 2010, 46, (3), pp. 569576.
    30. 30)
      • 38. Nguyen, L.T., Ogburn, M.E., Gilbert, W.P., et al: ‘Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability’. Technical report, NASA, 1980.
    31. 31)
      • 28. Garelli, F., Camocardi, P., Mantz, R.J.: ‘Variable structure strategy to avoid amplitude and rate saturation in pitch control of a wind turbine’, Int. J. Hydrogen Energy, 2010, 35, (11), pp. 58695875.
    32. 32)
      • 33. Chen, M., Jiang, B., Cui, R.: ‘Actuator fault-tolerant control of ocean surface vessels with input saturation’, Int. J. Robust Nonlinear Control, 2016, 26, (3), pp. 542564.
    33. 33)
      • 24. Johansen, T.A., Fuglseth, T.P., Tøndel, P., et al: ‘Optimal constrained control allocation in marine surface vessels with rudders’, Control Eng. Practice, 2008, 16, (4), pp. 457464.
    34. 34)
      • 6. Tao, G., Joshi, S.M., Ma, X.L.: ‘Adaptive state feedback and tracking control of systems with actuator failures’, IEEE Trans. Autom. Control, 2001, 46, (1), pp. 7895.
    35. 35)
      • 16. Shen, Q., Wang, D., Zhu, S., et al: ‘Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation’, IEEE Trans. Aerospace Electron. Syst., 2015, 13, pp. 23902405.
    36. 36)
      • 34. Siwakosit, W., Hess, R.A.: ‘Multi-input/multi-output reconfigurable flight control design’, J. Guidance Control Dyn., 2001, 24, pp. 10791088.
    37. 37)
      • 36. Bhat, S.P., Bernstein, D.S.: ‘Finite-time stability of continuous autonomous systems’, SIAMJ Control Optim., 2000, 38, (3), pp. 751766.
    38. 38)
      • 10. Cai, M., Xiang, Z., Guo, J.: ‘Adaptive finite-time fault-tolerant consensus protocols for multiple mechanical systems’, J. Franklin Inst., 2016, 353, pp. 13861408.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1144
Loading

Related content

content/journals/10.1049/iet-cta.2016.1144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading