http://iet.metastore.ingenta.com
1887

Finite-time robust fault-tolerant control against actuator faults and saturations

Finite-time robust fault-tolerant control against actuator faults and saturations

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The finite-time robust fault-tolerant control problem is addressed for a class of perturbed linear systems with actuator faults and input amplitude saturations. A compensation control strategy is proposed to eliminate the effects of actuator faults and non-linear disturbance-like inputs within a finite-time, as well as to ensure the control inputs be limited within a desired constraint. Based on Lyapunov stability theory, it is shown that system states can converge to a small region in the cases of actuator faults and saturations by choosing suitable control parameters. Some relationships among convergence bounds, actuator faults and amplitude limits, as well as the control parameters are studied deeply and illustrated explicitly with formulas. Simulations of a linearised F-18 longitudinal dynamical control model are given to verify the effectiveness of the proposed method.

References

    1. 1)
      • 1. Veillette, R.J., Medanic, J.V., Perkins, W.R.: ‘Design of reliable control systems’, IEEE Trans. Autom. Control, 1992, 37, (3), pp. 290304.
    2. 2)
      • 2. Yang, G.H., Wang, J.L., Soh, Y.C.: ‘Reliable H controller design for linear systems’, Automatica, 2001, 37, (5), pp. 717725.
    3. 3)
      • 3. Zhang, Y., Jiang, J.: ‘Bibliographical review on reconfigurable fault-tolerant control systems’, Annu. Rev. Control, 2008, 32, (2), pp. 229252.
    4. 4)
      • 4. Fekih, A.: ‘Fault-tolerant flight control design for effective and reliable aircraft systems’, J. Control Decision, 2014, 1, (4), pp. 299316.
    5. 5)
      • 5. Tao, G.: ‘Direct adaptive actuator failure compensation control: a tutorial’, J. Control Decision, 2014, 1, (1), pp. 75101.
    6. 6)
      • 6. Tao, G., Joshi, S.M., Ma, X.L.: ‘Adaptive state feedback and tracking control of systems with actuator failures’, IEEE Trans. Autom. Control, 2001, 46, (1), pp. 7895.
    7. 7)
      • 7. Li, X.-J., Yang, G.-H.: ‘Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures’, IET Control Theory Appl., 2012, 6, (10), pp. 15441551.
    8. 8)
      • 8. Jin, X.Z.Robust adaptive switching fault-tolerant control of a class of uncertain systems against actuator faults’, Math. Problems Eng., 2013, 2013, 9 pages, Article ID 852502.
    9. 9)
      • 9. Ye, D., Zhao, X., Cao, B.: ‘Distributed adaptive fault-tolerant consensus tracking of multi-agent systems against time-varying actuator faults’, IET Control Theory Appl., 2016, 10, (5), pp. 554563.
    10. 10)
      • 10. Cai, M., Xiang, Z., Guo, J.: ‘Adaptive finite-time fault-tolerant consensus protocols for multiple mechanical systems’, J. Franklin Inst., 2016, 353, pp. 13861408.
    11. 11)
      • 11. Jin, X.: ‘Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints’, Automatica, 2016, 68, pp. 228236.
    12. 12)
      • 12. Gao, M.-Z., Cai, G.-P., Nan, Y.: ‘Finite-time fault-tolerant control for flutter of wing’, Control Eng. Practice, 2016, 51, pp. 2647.
    13. 13)
      • 13. Basin, M., Li, L., Krueger, M., et al: ‘Finite-time-convergent fault-tolerant control for dynamical systems and its experimental verification for DTS200 three-tank system’, IET Control Theory Appl., 2015, 9, pp. 16701675.
    14. 14)
      • 14. Xiao, B., Hu, Q., Zhang, Y.: ‘Finite-Time attitude tracking of spacecraft with fault-tolerant capability’, IEEE Trans. Control Syst. Technol., 2015, 23, pp. 13381350.
    15. 15)
      • 15. Zhang, A., Hu, Q., Friswell, M.I.: ‘Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults’, IET Control Theory Appl., 2013, 7, pp. 20072020.
    16. 16)
      • 16. Shen, Q., Wang, D., Zhu, S., et al: ‘Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation’, IEEE Trans. Aerospace Electron. Syst., 2015, 13, pp. 23902405.
    17. 17)
      • 17. Lu, K., Xia, Y.: ‘Finite-time fault-tolerant control for rigid spacecraft with actuator saturations’, IET Control Theory Appl., 2013, 7, pp. 15291539.
    18. 18)
      • 18. Hu, T., Lin, Z., Chen, B.M.: ‘An analysis and design method for linear systems subject to actuator saturation and disturbance’, Automatica, 2002, 38, (2), pp. 351359.
    19. 19)
      • 19. Guan, W., Yang, G.-H.: ‘New controller design method for continuous-time systems with state saturation’, IET Control Theory Appl., 2010, 4, (10), pp. 18891897.
    20. 20)
      • 20. Scarciotti, G., Astolfi, A.: ‘Approximate finite-horizon optimal control for input-affine nonlinear systems with input constraints’, J. Control Decision, 2014, 1, (2), pp. 149165.
    21. 21)
      • 21. Gao, S., Dong, H., Chen, Y., et al: ‘Approximation-based robust adaptive automatic train control: an approach for actuator saturation’, IEEE Trans. Intell. Transport. Syst., 2013, 14, (4), pp. 17331742.
    22. 22)
      • 22. Zhu, Z., Xia, Y., Fu, M.: ‘Adaptive sliding mode control for attitude stabilization with actuator saturation’, IEEE Trans. Indust. Electron., 2011, 58, (10), pp. 48984907.
    23. 23)
      • 23. Nguyen, T., Jabbari, F.: ‘Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation’, Automatica, 2000, 36, (9), pp. 13391346.
    24. 24)
      • 24. Johansen, T.A., Fuglseth, T.P., Tøndel, P., et al: ‘Optimal constrained control allocation in marine surface vessels with rudders’, Control Eng. Practice, 2008, 16, (4), pp. 457464.
    25. 25)
      • 25. Li, Y., Lin, Z.: ‘Saturation-based switching anti-windup design for linear systems with nested input saturation’, Automatica, 2014, 50, (11), pp. 28882896.
    26. 26)
      • 26. Zhou, B., Zheng, W., Duan, G.R.: ‘An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation’, Automatica, 2011, 47, (2), pp. 306315.
    27. 27)
      • 27. Kahveci, N.E., Ioannou, P.A.: ‘Indirect adaptive control for systems with input rate saturation’. 2008 American Control Conf., Seattle, Washington, USA, 2008, pp. 33963401.
    28. 28)
      • 28. Garelli, F., Camocardi, P., Mantz, R.J.: ‘Variable structure strategy to avoid amplitude and rate saturation in pitch control of a wind turbine’, Int. J. Hydrogen Energy, 2010, 35, (11), pp. 58695875.
    29. 29)
      • 29. Yuan, R., Tan, X., Fan, G., et al: ‘Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations’, Neurocomputing, 2014, 125, pp. 7280.
    30. 30)
      • 30. Xiao, B., Hu, Q., Shi, P.: ‘Attitude stabilization of spacecrafts under actuator saturation and partial loss of control effectiveness’, IEEE Trans. Control Syst. Technol., 2013, 21, (6), pp. 22512263.
    31. 31)
      • 31. Bustan, D., Pariz, N., Sani, S.K.H.: ‘Robust fault-tolerant tracking control design for spacecraft under control input saturation’, ISA Trans., 2014, 53, (4), pp. 10731080.
    32. 32)
      • 32. Zuo, Z., Ho, D.W.C., Wang, Y.: ‘Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation’, Automatica, 2010, 46, (3), pp. 569576.
    33. 33)
      • 33. Chen, M., Jiang, B., Cui, R.: ‘Actuator fault-tolerant control of ocean surface vessels with input saturation’, Int. J. Robust Nonlinear Control, 2016, 26, (3), pp. 542564.
    34. 34)
      • 34. Siwakosit, W., Hess, R.A.: ‘Multi-input/multi-output reconfigurable flight control design’, J. Guidance Control Dyn., 2001, 24, pp. 10791088.
    35. 35)
      • 35. Fossen, T.: ‘Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles’ (Marine Cybernetics, Trondheim, Norway, 2002).
    36. 36)
      • 36. Bhat, S.P., Bernstein, D.S.: ‘Finite-time stability of continuous autonomous systems’, SIAMJ Control Optim., 2000, 38, (3), pp. 751766.
    37. 37)
      • 37. Hardy, G., Littlewood, J., Polya, G.: ‘Inequalities’ (Cambridge University Press, Cambridge, 1952).
    38. 38)
      • 38. Nguyen, L.T., Ogburn, M.E., Gilbert, W.P., et al: ‘Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability’. Technical report, NASA, 1980.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1144
Loading

Related content

content/journals/10.1049/iet-cta.2016.1144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address