Hammerstein system identification with quantised inputs and quantised output observations

Hammerstein system identification with quantised inputs and quantised output observations

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study focuses on a discrete-time Hammerstein system to investigate the identification with quantised inputs and quantised output observations. After the discussion of the system identifiability and by parameterising the static non-linear function, a three-step algorithm is proposed to estimate the unknown parameters for the identifiable system. The strong convergence and the mean-square convergence rate of the algorithm are established. It is shown that the asymptotic efficiency can be achieved in terms of the Cramér–Rao lower bound by selecting a suitable transformation matrix. A numerical simulation is given to demonstrate the effectiveness of the algorithm.


    1. 1)
      • 1. Wang, L.Y., Yin, G., Zhang, J.F., et al: ‘System identification with quantized observations’ (Birkhäuser, Boston, MA, 2010).
    2. 2)
      • 2. He, Q., Wang, L.Y., Yin, G.: ‘System identification using regular and quantized observations: applications of large deviations principles’ (Springer, New York, 2013).
    3. 3)
      • 3. Kang, G., Bi, W., Zhao, Y., et al: ‘A new system identification approach to identify genetic variants in sequencing studies for a binary phenotype’, Hum. Heredity, 2014, 78, (2), pp. 104116.
    4. 4)
      • 4. Wang, T., Bi, W., Zhao, Y., et al: ‘Radar target recognition algorithm based on RCS observation sequence – set-valued identification method’, J. Syst. Sci. Complexity, 2016, 29, (3), pp. 573588.
    5. 5)
      • 5. Shen, J., Tan, H., Wang, J., et al: ‘A novel routing protocol providing good transmission reliability in underwater sensor networks’, J. Internet Technol., 2015, 16, (1), pp. 171178.
    6. 6)
      • 6. Xie, S., Wang, Y.: ‘Construction of tree network with limited delivery latency in homogeneous wireless sensor networks’, Wirel. Pers. Commun., 2014, 78, (1), pp. 231246.
    7. 7)
      • 7. Gustafssona, F., Karlssonb, R.: ‘Statistical results for system identification based on quantized observations’, Automatica, 2009, 45, (12), pp. 27942801.
    8. 8)
      • 8. Casini, M., Garulli, A., Vicino, A.: ‘Input design in worst-case system identification with quantized measurements’, Automatica, 2012, 48, (12), pp. 29973007.
    9. 9)
      • 9. Godoy, B.I., Goodwin, G.C., Agüero, J.C., et al: ‘On identification of FIR systems having quantized output data’, Automatica, 2011, 47, pp. 19051915.
    10. 10)
      • 10. Guo, J., Zhao, Y.: ‘Recursive projection algorithm on FIR system identification with binary-valued observations’, Automatica, 2013, 49, pp. 33963401.
    11. 11)
      • 11. Wang, J., Zhang, Q.: ‘Identification of FIR systems based on quantized output measurements: a quadratic programming-based method’, IEEE Trans. Automat. Control, 2015, 60, (5), pp. 14391444.
    12. 12)
      • 12. Bottegal, G., Pillonetto, G., Hjalmarsson, H.: ‘Bayesian kernel-based system identification with quantized output data’, Statistics, 2015, 48, (28), pp. 455460.
    13. 13)
      • 13. Zhao, Y., Wang, L.Y., Yin, G., et al: ‘Identification of Wiener systems with binary-valued output observations’, Automatica, 2007, 43, pp. 17521765.
    14. 14)
      • 14. Zhao, Y., Wang, L.Y., Yin, G., et al: ‘Identification of Hammerstein systems with quantized observations’, SIAM J. Control Optim., 2010, 48, (7), pp. 43524376.
    15. 15)
      • 15. Zhao, W., Chen, H.F., Tempo, R., et al: ‘Recursive identification of nonparametric nonlinear systems with binary-valued output observations’. Proc. of the 54th IEEE Conf. on Decision and Control, 2015, pp. 121126.
    16. 16)
      • 16. Narendra, K., Gallman, P.: ‘An iterative method for the identification of nonlinear systems using a Hammerstein model’, IEEE Trans. Autom. Control, 1966, 11, pp. 546550.
    17. 17)
      • 17. Ninness, B., Gibson, S.: ‘Quantifying the accuracy of Hammerstein model estimation’, Automatica, 2002, 38, pp. 20372051.
    18. 18)
      • 18. Liu, Y., Bai, E.: ‘Iterative identification of Hammerstein systems’, Automatica, 2007, 43, (2), pp. 346354.
    19. 19)
      • 19. Zhao, W., Chen, H.F.: ‘Recursive identification for Hammerstein system with ARX subsystem’, IEEE Trans. Autom. Control, 2007, 51, (12), pp. 19661974.
    20. 20)
      • 20. Guo, J., Wang, L.Y., Yin, G., et al: ‘Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs’, Automatica, 2015, 57, pp. 113122.
    21. 21)
      • 21. Wang, L.Y., Yin, G.: ‘Quantized identification with dependent noise and Fisher information ratio of communication channels’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 674690.

Related content

This is a required field
Please enter a valid email address