http://iet.metastore.ingenta.com
1887

Distributed filtering for a class of periodic non-linear systems with jumping uncertainties and unreliable channels

Distributed filtering for a class of periodic non-linear systems with jumping uncertainties and unreliable channels

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The problem of distributed filtering for discrete-time periodic non-linear systems over sensor networks in the presence of jumping uncertainties and unreliable channels is investigated in this study. A random variable which is subject to a Markov chain is introduced to govern the jumping uncertainties. Considering the unreliable channels between the system and filters, a discrete-time fading model is introduced to describe this channel fading phenomenon with the discrete probability distribution of each channel coefficients known a priori. On the basis of a fixed network topology, by establishing the periodic Lyapunov function, sufficient conditions on the existence of distributed filter are proposed to ensure the stability and dissipativity of the filtering error system. The distributed filter for discrete-time periodic non-linear systems is designed via solving a set of linear matrix inequalities. The merits and validity of the proposed design techniques are verified by means of a numerical simulation example.

References

    1. 1)
      • 1. van der Wal, A.J.: ‘Self-organization and emergent behaviour: distributed decision making in sensor networks’, Int. J. Gen. Syst., 2013, 42, (1), pp. 7997.
    2. 2)
      • 2. Yagnik, N., Liu, H., Fernaygndo, H.: ‘Sensor networks: decentralized monitoring and subspace classification of events’, Int. J. Gen. Syst., 2011, 40, (04), pp. 457483.
    3. 3)
      • 3. Dong, H., Wang, Z., Gao, H.: ‘Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities’, IEEE Trans. Circuits Syst. I, Regul. Papers, 2012, 59, (10), pp. 23542362.
    4. 4)
      • 4. Yan, H., Qian, F., Zhang, H., et al: ‘H fault detection for networked mechanical spring-mass systems with incomplete information’, IEEE Trans. Ind. Electron., 2016, 63, (9), pp. 56225631.
    5. 5)
      • 5. Warriach, E., Nguyen, T.A., Aiello, M., et al: ‘Fault detection in wireless sensor networks: a hybrid approach’. 2012 ACM/IEEE 11th Int. Conf. on Information Processing in Sensor Networks (IPSN), 2012, pp. 8788.
    6. 6)
      • 6. Ould-Ahmed-Vall, E., Ferri, B.H., Riley, G.F.: ‘Distributed fault-tolerance for event detection using heterogeneous wireless sensor networks’, IEEE Trans. Mob. Comput., 2012, 11, (12), pp. 19942007.
    7. 7)
      • 7. Yan, H., Qian, F., Yang, F., et al: ‘H filtering for nonlinear networked systems with randomly occurring distributed delays, missing measurements and sensor saturation’, Inf. Sci., 2015, 370-371, pp. 772782.
    8. 8)
      • 8. Lin, H., Su, H., Shu, Z., et al: ‘Optimal estimation in UDP-like networked control systems with intermittent inputs: stability analysis and suboptimal filter design’, IEEE Trans. Autom. Control, 2016, 61, (7), pp. 17941809.
    9. 9)
      • 9. Zhang, W.-A., Dong, H., Guo, G., et al: ‘Distributed sampled-data filtering for sensor networks with nonuniform sampling periods’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 871881.
    10. 10)
      • 10. Su, X., Wu, L., Shi, P.: ‘Sensor networks with random link failures: distributed filtering for T-S fuzzy systems’, IEEE Trans. Ind. Inf., 2013, 9, (3), pp. 17391750.
    11. 11)
      • 11. Zhang, H., Hong, Q., Yan, H., et al: ‘Event-based distributed H filtering networks of 2DOF quarter-car suspension systems’, IEEE Trans. Ind. Inf., doi: 10.1109/TII.2016.2569566.
    12. 12)
      • 12. Hu, J., Chen, D., Du, J.: ‘State estimation for a class of discrete nonlinear systems with randomly occurring uncertainties and distributed sensor delays’, Int. J. Gen. Syst., 2014, 43, (3-4), pp. 387401.
    13. 13)
      • 13. Wei, Y., Qiu, J., Karimi, H.R., et al: ‘Model reduction for continuous-time Markovian jump systems with incomplete statistics of mode information’, Int. J. Syst. Sci., 2014, 45, (7), pp. 14961507.
    14. 14)
      • 14. Wu, Z.G., Shi, P., Su, H., et al: ‘Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays.’, IEEE Trans. Neural Netw., 2011, 22, (10), pp. 15661575.
    15. 15)
      • 15. Li, H., Shi, P., Yao, D., et al: ‘Observer-based adaptive sliding mode control for nonlinear Markovian jump systems’, Automatica, 2016, 64, pp. 133142.
    16. 16)
      • 16. Li, H., Shi, P., Yao, D.: ‘Adaptive sliding mode control of Markov jump nonlinear systems with actuator faults’, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2016.2588885.
    17. 17)
      • 17. Wei, Y., Qiu, J., Karimi, H.R., et al: ‘Model approximation for two-dimensional Markovian jump systems with state-delays and imperfect mode information’, Multidimens. Syst. Signal Process., 2015, 26, (3), pp. 123.
    18. 18)
      • 18. Wu, Z.-G., Shi, P., Shu, Z., et al: ‘Passivity-based asynchronous control for Markov jump systems’, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2016.2593742.
    19. 19)
      • 19. Tao, J., Lu, R., Shi, P., et al: ‘Dissipativity-based reliable control for fuzzy Markov jump systems with actuator faults’, IEEE Trans. Cybern., doi: 10.1109/TCYB.2016.2584087.
    20. 20)
      • 20. Wu, Z.G., Shi, P., Su, H., et al: ‘Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data’, IEEE Trans. Cybern., 2013, 43, (6), pp. 17961806.
    21. 21)
      • 21. Wu, Z.G., Shi, P., Su, H., et al: ‘Asynchronous l2l filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities’, Automatica, 2014, 50, (1), pp. 180186.
    22. 22)
      • 22. Wei, Y., Qiu, J., Karimi, H.R., et al: ‘Filtering design for two-dimensional Markovian jump systems with state-delays and deficient mode information’, Inf. Sci., 2014, 269, (4), pp. 316331.
    23. 23)
      • 23. Aberkane, S., Dragan, V.: ‘H filtering of periodic Markovian jump systems: application to filtering with communication constraints’, Automatica, 2012, 48, (12), pp. 31513156.
    24. 24)
      • 24. Dong, H., Ding, S.X., Ren, W.: ‘Distributed filtering with randomly occurring uncertainties over sensor networks: the channel fading case’, Int. J. Gen. Syst., 2014, 43, (3-4), pp. 254266.
    25. 25)
      • 25. Ding, D., Wang, Z., Shen, B., et al: ‘Envelope-constrained H filtering with fading measurements and randomly occurring nonlinearities: the finite horizon case’, Automatica, 2015, 55, pp. 3745.
    26. 26)
      • 26. Xu, Y., Lu, R., Peng, H., et al: ‘Passive filter design for periodic stochastic systems with quantized measurements and randomly occurring nonlinearities’, J. Franklin Inst., 2016, 353, (1), pp. 144159.
    27. 27)
      • 27. Zhou, B., Duan, G.-R.: ‘Periodic Lyapunov equation based approaches to the stabilization of continuous-time periodic linear systems’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 21392146.
    28. 28)
      • 28. Zhang, P., Ding, S.X., Liu, P.: ‘A lifting based approach to observer based fault detection of linear periodic systems’, IEEE Trans. Autom. Control, 2012, 57, (2), pp. 457462.
    29. 29)
      • 29. Zhou, B., Hou, M.-Z., Duan, G.-R.: ‘L and L2 semi-global stabilisation of continuous-time periodic linear systems with bounded controls’, Int. J. Control, 2013, 86, (4), pp. 709720.
    30. 30)
      • 30. Zaitsev, V.: ‘Global asymptotic stabilization of periodic nonlinear systems with stable free dynamics’, Syst. Control Lett., 2016, 91, pp. 713.
    31. 31)
      • 31. Tao, J., Su, H., Lu, R., et al: ‘Dissipativity-based filtering of nonlinear periodic Markovian jump systems: the discrete-time case’, Neurocomputing, 2016, 171, pp. 807814.
    32. 32)
      • 32. Shi, L., Epstein, M., Murray, R.M.: ‘Kalman filtering over a packet-dropping network: a probabilistic perspective’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 594604.
    33. 33)
      • 33. Dong, H., Wang, Z., Ding, S.X., et al: ‘Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities subject to output quantization’, Automatica, 2015, 52, pp. 355362.
    34. 34)
      • 34. Dong, H., Wang, Z., Ding, S.X., et al: ‘On H estimation of randomly occurring faults for a class of nonlinear time-varying systems with fading channels’, IEEE Trans. Autom. Control, 2016, 61, (2), pp. 479484.
    35. 35)
      • 35. Shen, B., Wang, Z., Hung, Y.: ‘Distributed H-consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case’, Automatica, 2010, 46, (10), pp. 16821688.
    36. 36)
      • 36. Liu, Y., Wang, Z., Liu, X.: ‘Global exponential stability of generalized recurrent neural networks with discrete and distributed delays’, Neural Netw., 2006, 19, (5), pp. 667675.
    37. 37)
      • 37. Wei, Y., Qiu, J., Karimi, H.R.: ‘Reliable output feedback control of discrete-time fuzzy affine systems with actuator faults’, IEEE Trans. Circuits Syst. I, Regul. Pap., doi: 10.1109/TCSI.2016.2605685.
    38. 38)
      • 38. Wang, Z., Liu, Y., Li, M., et al: ‘Stability analysis for stochastic Cohen–Grossberg neural networks with mixed time delays’, IEEE Trans. Neural Netw., 2006, 17, (3), pp. 814820.
    39. 39)
      • 39. Seiler, P., Sengupta, R.: ‘An H approach to networked control’, IEEE Trans. Autom. Control, 2005, 50, (3), pp. 356364.
    40. 40)
      • 40. Willems, J.C.: ‘Dissipative dynamical systems part i: general theory’, Arch. Ration. Mech. Anal., 1972, 45, (5), pp. 321351.
    41. 41)
      • 41. Dong, H., Wang, Z., Gao, H.: ‘Distributed H filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 46654672.
    42. 42)
      • 42. Zhou, S., Feng, G., Lam, J., et al: ‘Robust H control for discrete-time fuzzy systems via basis-dependent Lyapunov functions’, Inf. Sci., 2005, 174, (3), pp. 197217.
    43. 43)
      • 43. Yang, G.H., Che, W.W.: ‘Non-fragile H filter design for linear continuous-time systems’, Automatica, 2008, 44, (11), pp. 28492856.
    44. 44)
      • 44. Wu, Z.G., Shi, P., Su, H., et al: ‘Reliable H control for discrete-time fuzzy systems with infinite-distributed delay’, IEEE Trans. Fuzzy Syst., 2012, 20, (1), pp. 2231.
    45. 45)
      • 45. Dong, S., Su, H., Shi, P., et al: ‘Filtering for discrete-time switched fuzzy systems with quantization’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2016.2612699.
    46. 46)
      • 46. Dong, S., Wu, Z.-G., Shi, P., et al: ‘Reliable control of fuzzy systems with quantization and switched actuator failures’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2016.2612699.
    47. 47)
      • 47. Xu, Y., Lu, R., Peng, H., et al: ‘Asynchronous dissipative state estimation for stochastic complex networks with quantized jumping coupling and uncertain measurements’, IEEE Trans. Neural Netw. Learn. Syst., doi:10.1109/TNNLS.2015.2503772.
    48. 48)
      • 48. Lu, R., Xu, Y., Ridong, Z.: ‘A new design of model predictive tracking control for networked control system under random packet loss and uncertainties’, IEEE Trans. Ind. Electron., doi:10.1109/TIE.2016.2585543.
    49. 49)
      • 49. Lu, R., Xu, Y., Xue, A., et al: ‘Networked control with state reset and quantized measurements: observer-based case’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 52065213.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1096
Loading

Related content

content/journals/10.1049/iet-cta.2016.1096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address