http://iet.metastore.ingenta.com
1887

Finite-time stability and stabilisation of distributed parameter systems

Finite-time stability and stabilisation of distributed parameter systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the problems of finite-time (FT) stability and stabilisation for distributed parameter systems. First, the authors extend the concepts of FT stability and FT stabilisation to the distributed parameter systems. Then, sufficient conditions of the L 2-FT stability and W 1,2-FT stability for the distributed parameter systems are established in terms of linear matrix inequalities. Based on these sufficient conditions, the authors design the state feedback controllers which guarantee the closed-loop distributed parameter systems to be L 2-FT stable and W 1,2-FT stable, respectively. Finally, numerical examples are given to illustrate the proposed results.

References

    1. 1)
      • 1. Dorato, P.: ‘Short-time stability in linear time-varying systems’, (Polytechnic Institute of Brooklyn, Microwave Research Institute, New York, 1961).
    2. 2)
      • 2. Filippo, F.S., Dorato, P.: ‘Short-time parameter optimization with flight control applieations’, Automatica, 1974, 10, (5), pp. 425430.
    3. 3)
      • 3. Dorato, P., Abdallah, C.T., Famularo, D.: ‘Robust finite-time stability design via linear matrix inequalities’. Proc. of the 36th IEEE Conf. on Decision and Control, December 1997, pp. 13051306.
    4. 4)
      • 4. Amato, F., Ambrosino, R., Ariolab, M., et al: ‘Finite-time stability of linear time-varying systems with jumps’, Automatica, 2009, 45, (5), pp. 13541358.
    5. 5)
      • 5. Zuo, Z., Liu, Y., Wang, Y., et al: ‘Finite-time stochastic stability and stabilisation of linear discrete-time markovian jump systems with partly unknown transition probabilities’, IET Control Theory Appl., 2012, 6, (10), pp. 15221526.
    6. 6)
      • 6. Xue, W.P., Mao, W.J.: ‘Admissible finite-time stability and stabilization of uncertain discrete singular systems’, J. Dyn. Syst. Meas. Control, 2013, 135, (3), pp. 031018-16.
    7. 7)
      • 7. Xue, W.P., Mao, W.J.: ‘Asymptotic stability and finite-time stability of networking control systems: analysis and synthesis’, Asian J. Control, 2013, 15, (5), pp. 13761384.
    8. 8)
      • 8. Weisss, L., Infante, E.F.: ‘On the stability of systems defined over a finite-time interval’, Proc. Natl. Acad. Sci. USA, 1965, 54, (1), pp. 4448.
    9. 9)
      • 9. Yin, J.L., Khoo, S.Y., Man, Z.H., et al: ‘Finite-time stability and instability of stochastic nonlinear systems’, Automatica, 2011, 47, (12), pp. 26712677.
    10. 10)
      • 10. Xiang, Z.R., Sun, Y.N., Mahmoud, M.S.: ‘Robust finite-time H control for a class of uncertain switched neutral systems’, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, (4), pp. 17661778.
    11. 11)
      • 11. Zhao, D., Li, S., Zhu, Q., et al: ‘Robust finite-time control approach for robotic manipulators’, IET Control Theory Appl., 2010, 4, (1), pp. 115.
    12. 12)
      • 12. Sun, L., Feng, G., Wang, Y.: ‘Finite-time stabilization and H control for a class of nonlinear hamiltonian descriptor systems with application to affine nonlinear descriptor systems’, Automatica, 2014, 50, (8), pp. 20902097.
    13. 13)
      • 13. Li, X.Y., Mao, W.J.: ‘Asynchronous finite-time H control for a class of nonlinear switched time-delay systems’. 2015 IEEE 12th Int. Conf. on. IEEE Networking, Sensing and Control (ICNSC), 2015, pp. 169174.
    14. 14)
      • 14. Amato, F., Ambrosino, R., Cosentinoa, C., et al: ‘Input–output finite time stabilization of linear systems’, Automatica, 2010, 46, (9), pp. 15581562.
    15. 15)
      • 15. Amato, F., Ambrosino, R., Ariola, M., et al: ‘Input-output finite-time stabilization of discrete time linear systems’. Proc. of the 18th IFAC World Congress, Milano, Italy, 2011, pp. 156161.
    16. 16)
      • 16. Amato, F., Carannante, G., De Tommasi, G., et al: ‘Input-output finite-time stability of linear systems: necessary and sufficient conditions’, IEEE Trans. Autom. Control, 2012, 57, (12), pp. 30513063.
    17. 17)
      • 17. Yao, J., Feng, J., Sun, L., et al: ‘Input-output finite-time stability of time-varying singular linear systems’, J. Control Theory Appl., 2012, 10, (3), pp. 287291.
    18. 18)
      • 18. Guo, Y., Yao, Y., Wang, S.C., et al: ‘Input–output finite-time stabilization of linear systems with finite-time boundedness’, ISA Trans., 2014, 53, (4), pp. 977982.
    19. 19)
      • 19. Huang, S.P., Xiang, Z.R., Karimi, H.R.: ‘Input-output finite-time stability of discrete-time impulsive switched linear systems with state delays’, Circuits Syst. Signal Process, 2014, 33, (1), pp. 141158.
    20. 20)
      • 20. Fridmana, E., Orlov, Y.: ‘Exponential stability of linear distributed parameter systems with time-varying delays’, Automatica, 2009, 45, (1), pp. 194201.
    21. 21)
      • 21. Tai, Z.X., Lun, S.X.: ‘Absolutely exponential stability of Lur'e distributed parameter control systems’, Appl. Math. Lett., 2012, 25, (3), pp. 232236.
    22. 22)
      • 22. Bao, L.P., Fei, S.M., Yu, L.: ‘Exponential stability of linear distributed parameter switched systems with time-delay’, J. Syst. Sci. Complex, 2014, 27, (2), pp. 263275.
    23. 23)
      • 23. Tchousso, A., Besson, T., Xu, C.Z.: ‘Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method’, ESAIM Control Opt. Calc. Var., 2009, 15, (2), pp. 403425.
    24. 24)
      • 24. Bao, L.P., Fei, S.M., Chai, L.: ‘Control synthesis of linear distributed parameter switched systems’, J. Syst. Eng. Electron., 2015, 3, (26), pp. 565572.
    25. 25)
      • 25. Curtain, R.F.: ‘Stabilizability and controllability of spatially invariant P.D.E. systems’, IEEE Trans. Autom. Control, 2015, 2, (60), pp. 383392.
    26. 26)
      • 26. Wang, J.M., Liu, J.J., Ren, B., et al: ‘Sliding mode control to stabilization of cascaded heat PDE–ODE systems subject to boundary control matched disturbance’, Automatica, 2015, 52, (1), pp. 2334.
    27. 27)
      • 27. Luo, Y.P., Deng, F.Q.: ‘LMI-based approach of robust control for uncertain distributed parameter control systems with time-delay’, Control Theory Appl., 2006, 23, (2), pp. 217220.
    28. 28)
      • 28. Karafyllis, I., Christofides, P.D., Daoutidis, P.: ‘Dynamics of a reaction-diffusion system with Brusselator kinetics under feedback control’, Phys. Rev. E, 1999, 59, (1), pp. 372380.
    29. 29)
      • 29. Krstic, M., Smyshlyaev, A.: ‘Boundary control of PDEs: A course on backstepping designs’ (San Diego, SIAM, 2008).
    30. 30)
      • 30. Bamieh, B., Paganini, F., Dahleh, M.A.: ‘Distributed control of spatially invariant systems’, IEEE Trans. Autom. Control, 2002, 47, (7), pp. 10911107.
    31. 31)
      • 31. Wang, T.X.: ‘Stability in abstract functional-differential equations. II. Applications’, J. Math. Anal. Appl., 1994, 186, (3), pp. 835861.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1087
Loading

Related content

content/journals/10.1049/iet-cta.2016.1087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address