http://iet.metastore.ingenta.com
1887

Gaussian process model predictive control of unknown non-linear systems

Gaussian process model predictive control of unknown non-linear systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Model predictive control (MPC) of an unknown system that is modelled by Gaussian process (GP) techniques is studied. Using GP, the variances computed during the modelling and inference processes allow us to take model uncertainty into account. The main issue in using MPC to control systems modelled by GP is the propagation of such uncertainties within the control horizon. In this study, two approaches to solve this problem, called GPMPC1 and GPMPC2, are proposed. With GPMPC1, the original stochastic model predictive control (SMPC) problem is relaxed to a deterministic non-linear MPC based on a basic linearised GP local model. The resulting optimisation problem, though non-convex, can be solved by the sequential quadratic programming. By incorporating the model variance into the state vector, an extended local model is derived. This model allows us to relax the non-convex MPC problem to a convex one which can be solved by an active-set method efficiently. The performance of both approaches is demonstrated by applying them to two trajectory tracking problems. Results show that both GPMPC1 and GPMPC2 produce effective controls but GPMPC2 is much more efficient computationally.

References

    1. 1)
      • 1. Mayne, D.Q., Rawlings, J.B., Rao, C.V., et al: ‘Constrained model predictive control: stability and optimality’, Automatica, 2000, 36, (6), pp. 789814.
    2. 2)
      • 2. Qin, S.J., Badgwell, T.A.: ‘A survey of industrial model predictive control technology’, Control Eng. Pract., 2003, 11, (7), pp. 733764.
    3. 3)
      • 3. Mayne, D.Q.: ‘Model predictive control: recent developments and future promise’, Automatica, 2014, 50, (12), pp. 29672986.
    4. 4)
      • 4. Solomatine, D.P., Ostfeld, A.: ‘Data-driven modelling: some past experiences and new approaches’, J. Hydroinformatics, 2008, 10, (1), pp. 322.
    5. 5)
      • 5. Nelles, O.: ‘Nonlinear system identification: from classical approaches to neural networks and fuzzy models’ (Springer Science & Business Media, 2013).
    6. 6)
      • 6. Alamo, T., de La Peña, D.M., Limón, D., et al: ‘Constrained min-max predictive control: modifications of the objective function leading to polynomial complexity’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 710714.
    7. 7)
      • 7. Limón, D., Alamo, T., Salas, F., et al: ‘Input to state stability of min–max MPC controllers for nonlinear systems with bounded uncertainties’, Automatica, 2006, 42, (5), pp. 797803.
    8. 8)
      • 8. Langson, W., Chryssochoos, I., Raković, S.: ‘Robust model predictive control using tubes’, Automatica, 2004, 40, (1), pp. 125133.
    9. 9)
      • 9. Zhang, L., Zhuang, S., Braatz, R.D.: ‘Switched model predictive control of switched linear systems: feasibility, stability and robustness’, Automatica, 2016, 67, pp. 821.
    10. 10)
      • 10. Schwarm, A.T., Nikolaou, M.: ‘Chance-constrained model predictive control’, Am. Inst. Chem. Eng., 1999, 45, (8), pp. 17431752.
    11. 11)
      • 11. Bernardini, D., Bemporad, A.: ‘Scenario-based model predictive control of stochastic constrained linear systems’. IEEE Proc. Int. Conf. on Decision and Control, 2009, pp. 63336338.
    12. 12)
      • 12. Cannon, M., Kouvaritakis, B., Raković, S.V.: ‘Stochastic tubes in model predictive control with probabilistic constraints’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 194200.
    13. 13)
      • 13. Mesbah, A., Streif, S., Findeisen, R., et al: ‘Stochastic nonlinear model predictive control with probabilistic constraints’. American Control Conf., IEEE, 2014, pp. 24132419.
    14. 14)
      • 14. Fagiano, L., Khammash, M.: ‘Nonlinear stochastic model predictive control via regularized polynomial chaos expansions’. IEEE Proc. of Int. Conf. on Decision and Control, 2012, pp. 142147.
    15. 15)
      • 15. Rasmussen, C., Williams, C.: ‘Gaussian Processes for Machine Learning’ (MIT Press, Cambridge, MA, USA, 2006).
    16. 16)
      • 16. Zhu, F., Xu, C., Dui, G.: ‘Particle swarm hybridize with Gaussian process regression for displacement prediction’. IEEE Proc. Int. Conf. on Bio-Inspired Computing: Theories and Applications, 2010, pp. 522525.
    17. 17)
      • 17. Petelin, D., Kocijan, J.: ‘Control system with evolving Gaussian process models’. IEEE Workshop on Evolving and Adaptive Intelligent Systems (EAIS)', 2011, pp. 178184.
    18. 18)
      • 18. Cao, G., Lai, E.M.-K., Alam, F.: ‘Particle swarm optimization for convolved Gaussian process models’. Int. Joint Conf. on Neural Networks (IJCNN), IEEE, 6–11 July 2014, pp. 15731578.
    19. 19)
      • 19. Kocijan, J., Murray-Smith, R., Rasmussen, C.E., et al: ‘Gaussian process model based predictive control’. American Control Conf., IEEE, 2004, vol. 3, pp. 22142219.
    20. 20)
      • 20. Grancharova, A., Kocijan, J., Johansen, T.A.: ‘Explicit stochastic nonlinear predictive control based on Gaussian process models’. European Control Conf., 2007, pp. 23402347.
    21. 21)
      • 21. Klenske, E.D., Zeilinger, M.N., Scholkopf, B., et al: ‘Gaussian process-based predictive control for periodic error correction’, 2015.
    22. 22)
      • 22. Cao, G., Lai, E.M.-K., Alam, F.: ‘Gaussian process based model predictive control for linear time varying systems’. Int. Workshop on Advanced Motion Control (AMC Workshop), IEEE, 22–24 April 2016.
    23. 23)
      • 23. Cao, G., Lai, E.M.-K., Alam, F.: ‘Gaussian process model predictive control of unmanned quadrotors’. Int. Conf. on Control, Automation and Robotics (ICCAR), IEEE, 28–30 April 2016.
    24. 24)
      • 24. Deisenroth, M.P. (2010). ‘Efficient reinforcement learning using Gaussian processes’. PhD dissertation, Karlsruhe Institute of Technology.
    25. 25)
      • 25. Girard, A., Rasmussen, C.E., Candela, J.Q., et al.Gaussian process priors with uncertain input – application to multiple-step ahead time series forecasting’, in ‘Advances in neural information processing systems’ (MIT, 2003), pp. 545552.
    26. 26)
      • 26. Candela, J.Q., Girard, A., Larsen, J., et al: ‘Propagation of uncertainty in Bayesian Kernel models-application to multiple-step ahead forecasting’. IEEE Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2003, vol. 2, pp. II701.
    27. 27)
      • 27. Quiñonero-Candela, J., Rasmussen, C.E.: ‘A unifying view of sparse approximate Gaussian process regression’, J. Mach. Learn. Res., 2005, 6, pp. 19391959.
    28. 28)
      • 28. Berkenkamp, F., Schoellig, A.P.: ‘Learning-based robust control: guaranteeing stability while improving performance’. IEEE/RSJ Proc. of Int. Conf. on Intelligent Robots and Systems (IROS), 2014.
    29. 29)
      • 29. Pan, Y., Theodorou, E.: ‘Probabilistic differential dynamic programming’. Adv. Neural Inf. Process. Syst., 2014, pp. 19071915.
    30. 30)
      • 30. Grancharova, A., Kocijan, J., Johansen, T.A.: ‘Explicit stochastic predictive control of combustion plants based on Gaussian process models’, Automatica, 2008, 44, (6), pp. 16211631.
    31. 31)
      • 31. Tröltzsch, F.: ‘Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints’, SIAM J. Optim., 2005, 15, (2), pp. 616634.
    32. 32)
      • 32. Diehl, M., Ferreau, H.J., Haverbeke, N.: ‘Efficient numerical methods for nonlinear MPC and moving horizon estimation’. Int. Workshop on assessment and future directions on Nonlinear Model Predictive Control', 2008, pp. 391417.
    33. 33)
      • 33. Lucidi, S., Sciandrone, M., Tseng, P.: ‘Objective-derivative-free methods for constrained optimization’, Math. Program., 2002, 92, (1), pp. 3759.
    34. 34)
      • 34. Liuzzi, G., Lucidi, S., Sciandrone, M.: ‘Sequential penalty derivative-free methods for nonlinear constrained optimization’, SIAM J. Optim., 2010, 20, (5), pp. 26142635.
    35. 35)
      • 35. Yiqing, L., Xigang, Y., Yongjian, L.: ‘An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints’, Comput. Chem. Eng., 2007, 31, (3), pp. 153162.
    36. 36)
      • 36. Yeniay, O.: ‘Penalty function methods for constrained optimization with genetic algorithms’, Math. Comput. Appl., 2005, 10, (1), pp. 4556.
    37. 37)
      • 37. Wright, S.J., Tenny, M.J.: ‘A feasible trust-region sequential quadratic programming algorithm’, SIAM J. Optim., 2004, 14, (4), pp. 10741105.
    38. 38)
      • 38. Peng, Y.-h., Yao, S.: ‘A feasible trust-region algorithm for inequality constrained optimization’, Appl. Math. Comput., 2006, 173, (1), pp. 513522.
    39. 39)
      • 39. Zhang, X., Zhang, J., Liao, L.: ‘An adaptive trust region method and its convergence’, Sci. China A Math., 2002, 45, (5), pp. 620631.
    40. 40)
      • 40. Tenny, M.J., Wright, S.J., Rawlings, J.B.: ‘Nonlinear model predictive control via feasibility-perturbed sequential quadratic programming’, Comput. Optim. Appl., 2004, 28, (1), pp. 87121.
    41. 41)
      • 41. Bemporad, A., Morari, M., Dua, V., et al: ‘The explicit linear quadratic regulator for constrained systems’, Automatica, 2002, 38, (1), pp. 320.
    42. 42)
      • 42. Wang, Y., Boyd, S.: ‘Fast model predictive control using online optimization’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 267278.
    43. 43)
      • 43. Fletcher, R.: ‘Practical methods of optimization’ (Wiley-Interscience Publication, 1987, 2nd edn.).
    44. 44)
      • 44. Pan, Y., Wang, J.: ‘Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks’, IEEE Trans. Ind. Electron., 2012, 59, (8), pp. 30893101.
    45. 45)
      • 45. Grüne, L., Pannek, J.: ‘Nonlinear model predictive control–theory and algorithms’ (Springer-Verlag, London, U.K., 2011).
    46. 46)
      • 46. Kocijan, J., Murray-Smith, R.: ‘Nonlinear predictive control with a Gaussian process model’, Shorten, R., Murray-Smith, R. (eds.) ‘Switching and learning in feedback systems’ (Springer, Heidelberg, Berlin, Germany, 2005), pp. 185200.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1061
Loading

Related content

content/journals/10.1049/iet-cta.2016.1061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address