http://iet.metastore.ingenta.com
1887

Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis

Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes an adaptive neural network controller for a 3-DOF robotic manipulator that is subject to backlash-like hysteresis and friction. Two neural networks are used to approximate the dynamics and the hysteresis non-linearity. A neural network, which utilises a radial basis function approximates the robot's dynamics. The other neural network, which employs a hyperbolic tangent activation function, is used to approximate the unknown backlash-like hysteresis. The authors also consider two cases: full state and output feedback control. For output feedback, where system states are unknown, a high gain observer is employed to estimate the states. The proposed controllers ensure the boundedness of the control signals. Simulations are also performed to show the effectiveness of the controllers.

References

    1. 1)
      • 1. Tao, G., Kokotovic, P.: ‘Adaptive control of plants with unknown hystereses’, IEEE Trans. Autom. Control, 1995, 40, (2), pp. 200212.
    2. 2)
      • 2. Zhang, S., He, W., Huang, D.: ‘Active vibration control for a flexible string system with input backlash’, IET Control Theory Appl., 2016, 10, (7), pp. 800805.
    3. 3)
      • 3. Wang, Q., Su, C.-Y., Tan, Y.: ‘On the control of plants with hysteresis: overview and a Prandtl–Ishlinskii hysteresis based control approach’, Acta Autom. Sin., 2005, 31, (1), pp. 92104.
    4. 4)
      • 4. Su, C.-Y., Oya, M., Hong, H.: ‘Stable adaptive fuzzy control of nonlinear systems preceded by unknown backlash-like hysteresis’, IEEE Trans. Fuzzy Syst., 2003, 11, (1), pp. 18.
    5. 5)
      • 5. Liu, Y., Lin, Y.: ‘Global adaptive output feedback tracking for a class of non-linear systems with unknown backlash-like hysteresis’, IET Control Theory Appl., 2014, 8, (11), pp. 927936.
    6. 6)
      • 6. Li, Z., Chen, Z., Fu, J., et al: ‘Direct adaptive controller for uncertain MIMO dynamic systems with time-varying delay and dead-zone inputs’, Automatica, 2016, 63, pp. 287291.
    7. 7)
      • 7. He, W., He, X., Ge, S.S.: ‘Vibration control of flexible marine riser systems with input saturation’, IEEE/ASME Trans. Mechatron., 2016, 21, (1), pp. 254265.
    8. 8)
      • 8. Xu, B., Sun, F., Pan, Y., et al: ‘Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone’, IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2016.2562502.
    9. 9)
      • 9. Liu, Z., Wang, F., Zhang, Y.: ‘Adaptive visual tracking control for manipulator with actuator fuzzy dead-zone constraint and unmodeled dynamic’, IEEE Trans. Syst. Man Cybern. Syst., 2015, 45, (10), pp. 13011312.
    10. 10)
      • 10. Zhang, Z., Xu, S., Zhang, B.: ‘Exact tracking control of nonlinear systems with time delays and dead-zone input’, Automatica, 2015, 52, pp. 272276.
    11. 11)
      • 11. He, W., Ge, S.S., Huang, D.: ‘Modeling and vibration control for a nonlinear moving string with output constraint’, IEEE/ASME Trans. Mechatron., 2015, 20, (4), pp. 18861897.
    12. 12)
      • 12. Guo, Q., Yu, T., Jiang, D.: ‘Robust h positional control of 2-dof robotic arm driven by electro-hydraulic servo system’, ISA Trans., 2015, 59, pp. 5564.
    13. 13)
      • 13. Kang, Y., Zhai, D.-H., Liu, G.-P., et al: ‘On input-to-state stability of switched stochastic nonlinear systems under extended asynchronous switching’, IEEE Trans. Cybern., 2016, 46, (5), pp. 10921105.
    14. 14)
      • 14. Peng, K., Zhang, K., You, B., et al: ‘A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes’, IEEE Trans. Ind. Electron., 2016, 64, (3), pp. 26152624.
    15. 15)
      • 15. Zhou, Q., Shi, P., Tian, Y., et al: ‘Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation’, IEEE Trans. Cybern., 2015, 45, (10), pp. 21192128.
    16. 16)
      • 16. Li, H., Bai, L., Wang, L., et al: ‘Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone’, IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2016.260570.
    17. 17)
      • 17. Ruderman, M., Hoffmann, F., Bertram, T.: ‘Modeling and identification of elastic robot joints with hysteresis and backlash’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 38403847.
    18. 18)
      • 18. Gu, G.-Y., Zhu, L.-M., Su, C.-Y.: ‘Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 15831595.
    19. 19)
      • 19. Rosenbaum, S., Ruderman, M., Strohla, T., et al: ‘Use of Jiles–Atherton and Preisach hysteresis models for inverse feed-forward control’, IEEE Trans. Magn., 2010, 46, (12), pp. 39843989.
    20. 20)
      • 20. Song, G., Zhao, J., Zhou, X., et al: ‘Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model’, IEEE/ASME Trans. Mechatron., 2005, 10, (2), pp. 198209.
    21. 21)
      • 21. Yi, J., Chang, S., Shen, Y.: ‘Disturbance-observer-based hysteresis compensation for piezoelectric actuators’, IEEE/ASME Trans. Mechatron., 2009, 14, (4), pp. 456464.
    22. 22)
      • 22. Tsang, K.M., Li, G.: ‘Robust nonlinear nominal-model following control to overcome deadzone nonlinearities’, IEEE Trans. Ind. Electron., 2001, 48, (1), pp. 177184.
    23. 23)
      • 23. Lee, T.-C., Song, K.-T., Lee, C.-H., et al: ‘Tracking control of unicycle-modeled mobile robots using a saturation feedback controller’, IEEE Trans. Control Syst. Technol., 2001, 9, (2), pp. 305318.
    24. 24)
      • 24. Cheng, L., Liu, W., Hou, Z.G., et al: ‘Neural-network-based nonlinear model predictive control for piezoelectric actuators’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 77177727.
    25. 25)
      • 25. Su, C.-Y., Stepanenko, Y., Svoboda, J., et al: ‘Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis’, IEEE Trans. Autom. Control, 2000, 45, (12), pp. 24272432.
    26. 26)
      • 26. Zhou, J., Wen, C., Zhang, Y.: ‘Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis’, IEEE Trans. Autom. Control, 2004, 49, (10), pp. 17511759.
    27. 27)
      • 27. Li, Y., Tong, S.: ‘Adaptive fuzzy output constrained control design for multi-input multioutput stochastic nonstrict-feedback nonlinear systems’, IEEE Trans. Cybern., 2016, PP, (99), pp. 110.
    28. 28)
      • 28. Li, Y., Tong, S., Li, T.: ‘Observer-based adaptive fuzzy tracking control of mimo stochastic nonlinear systems with unknown control directions and unknown dead zones’, IEEE Trans. Fuzzy Syst., 2015, 23, (4), pp. 12281241.
    29. 29)
      • 29. Li, H., Shi, P., Yao, D., et al: ‘Observer-based adaptive sliding mode control for nonlinear markovian jump systems’, Automatica, 2016, 64, pp. 133142.
    30. 30)
      • 30. Wang, N., Er, M.J., Han, M.: ‘Generalized single-hidden layer feedforward networks for regression problems’, IEEE Trans. Neural Netw. Learn. Syst., 2015.
    31. 31)
      • 31. Dai, S.-L., Wang, C., Wang, M.: ‘Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (1), pp. 111123.
    32. 32)
      • 32. Cui, R., Li, Y., Yan, W.: ‘Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT*’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (7), pp. 9931004.
    33. 33)
      • 33. Chen, M., Ge, S.S., How, B.V.E., et al: ‘Robust adaptive position mooring control for marine vessels’, IEEE Trans. Control Syst. Technol., 2013, 21, (2), pp. 395409.
    34. 34)
      • 34. Xie, X., Yue, D., Ma, H.: ‘Observer design of discrete-time T–S fuzzy systems via multi-instant homogenous matrix polynomials’, IEEE Trans. Fuzzy Syst., 2014, 22, (6), pp. 11741179.
    35. 35)
      • 35. Liu, D., Wang, D., Wang, F.-Y., et al: ‘Neural-network-based online HJB solution for optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems’, IEEE Trans. Cybern., 2014, 44, (12), pp. 28342847.
    36. 36)
      • 36. He, W., Ge, S.S., Li, Y., et al: ‘Neural network control of a rehabilitation robot by state and output feedback’, J. Intell. Robot. Syst., 2015, 80, (1), pp. 1531.
    37. 37)
      • 37. He, W., Chen, Y., Yin, Z.: ‘Adaptive neural network control of an uncertain robot with full-state constraints’, IEEE Trans. Cybern., 2016, 46, (3), pp. 620629.
    38. 38)
      • 38. Peng, K., Zhang, K., Dong, J., et al: ‘Quality-relevant fault detection and diagnosis for hot strip mill process with multi-specification and multi-batch measurements’, J. Franklin Inst., 2015, 352, (3), pp. 9871006.
    39. 39)
      • 39. He, W., Yin, Z., Sun, C.: ‘Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function’, IEEE Trans. Cybern., 2016, in press, DOI: 10.1109/TCYB.2016.2554621.
    40. 40)
      • 40. Wang, H., Li, H., Peng, S., et al: ‘Adaptive neural tracking control for a class of nonlinear systems with unmodeled dynamics’, IEEE Trans. Cybern., DOI: 10.1109/TCYB.2016.2607166.
    41. 41)
      • 41. Wang, H., Liu, X., Liu, K.: ‘Adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with non-lower triangular structure’, Fuzzy Sets Syst., 2016, 302, (1), pp. 101120.
    42. 42)
      • 42. Zhou, Q., Li, H., Wu, C., et al: ‘Adaptive fuzzy control of nonstrict-feedback nonlinear systems with unmodeled dynamics and input saturation using small-gain approach’, IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2016.2557222.
    43. 43)
      • 43. Li, H., Shi, P., Yao, D.: ‘Adaptive sliding mode control of markov jump nonlinear systems with actuator faults’, IEEE Trans. Autom. Control, 2016, DOI: 10.1109/TAC.2016.2588885.
    44. 44)
      • 44. Zhou, J., Zhang, C., Wen, C.: ‘Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity’, IEEE Trans. Autom. Control, 2007, 52, (3), pp. 503509.
    45. 45)
      • 45. He, W., David, A.O., Yin, Z., et al: ‘Neural network control of a robotic manipulator with input deadzone and output constraint’, IEEE Trans. Syst. Man Cybern., 2016, 46, (6), pp. 759770.
    46. 46)
      • 46. Li, Y., Sui, S., Tong, S.: ‘Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics’, IEEE Trans. Cybern., 2016, PP, (99), pp. 112.
    47. 47)
      • 47. Sen, A., Johnson, R.: ‘A nonlinear compensation technique for systems involving hysteresis’, IEEE Trans. Autom. Control, 1968, 13, (6), pp. 711714.
    48. 48)
      • 48. Liu, Y.J., Tang, L., Tong, S., et al: ‘Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time mimo systems’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (1), pp. 165176.
    49. 49)
      • 49. Chen, M., Ge, S.S.: ‘Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer’, IEEE Trans. Cybern., 2013, 43, (4), pp. 12131225.
    50. 50)
      • 50. Zhang, Z., Xu, S.: ‘Observer desgn for uncertain nonlinear systems with unmodeled dynamics’, Automatica, 2015, 51, pp. 8084.
    51. 51)
      • 51. Dai, S.-L., Wang, M., Wang, C.: ‘Neural learning control of marine surface vessels with guaranteed transient tracking performance’, IEEE Trans. Ind. Electron., 2016, 63, (3), pp. 17171727.
    52. 52)
      • 52. He, W., Ge, W., Li, Y., et al: ‘Model identification and control design for a humanoid robot’, IEEE Trans. Syst. Man Cybern., Syst., 2017, 47, (1), pp. 4557.
    53. 53)
      • 53. Wang, N., Er, M.J., Han, M.: ‘Parsimonious extreme learning machine using recursive orthogonal least squares’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (10), pp. 18281841.
    54. 54)
      • 54. Li, Y., Ge, S.S.: ‘Impedance learning for robots interacting with unknown environments’, IEEE Trans. Control Syst. Technol., 2014, 22, (4), pp. 14221432.
    55. 55)
      • 55. Cui, R., Zhang, X., Cui, D.: ‘Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities’, Ocean Eng., 2016, 123, pp. 4554. Available at http://www.sciencedirect.com/science/article/pii/S0029801816302311.
    56. 56)
      • 56. Xu, B., Shi, Z., Yang, C., et al: ‘Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form’, IEEE Trans. Cybern., 2014, 14, (12), pp. 26262634.
    57. 57)
      • 57. Wang, M., Wang, C.: ‘Learning from adaptive neural dynamic surface control of strict-feedback systems’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 26, (6), pp. 12471259.
    58. 58)
      • 58. Sun, C., Xia, Y.: ‘An analysis of a neural dynamical approach to solving optimization problems’, IEEE Trans. Autom. Control, 2009, 54, (8), pp. 19721977.
    59. 59)
      • 59. Li, Z., Huang, Z., He, W., et al: ‘Adaptive impedance control for an upper limb robotic exoskeleton using biological signals’, IEEE Trans. Ind. Electron., 2016, in press, DOI: 10.1109/TIE.2016.2538741.
    60. 60)
      • 60. Wang, D., Liu, D., Li, H., et al: ‘An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems with uncertainties’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (5), pp. 713717.
    61. 61)
      • 61. Kang, Y., Zhai, D.-H., Liu, G.-P., et al: ‘Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching’, IEEE Trans. Autom. Control, 2014, 59, (6), pp. 15111523.
    62. 62)
      • 62. Bu, X., Hou, Z., Yu, F., et al: ‘Brief paper: iterative learning control for a class of non-linear switched systems’, IET Control Theory Appl., 2013, 7, (3), pp. 470481.
    63. 63)
      • 63. Wang, H., Liu, X., Liu, P.X., et al: ‘Robust fuzzy adaptive fault-tolerant control for a class of non-lower-triangular nonlinear systems with actuator failures’, Inf. Sci., 2016, 336, (1), pp. 6074.
    64. 64)
      • 64. Yang, C., Jiang, Y., Li, Z., et al: ‘Neural control of bimanual robots with guaranteed global stability and motion precision’, IEEE Trans. Ind. Inf., 2017, in press, DOI: 10.1109/TII.2016.2612646.
    65. 65)
      • 65. He, W., Dong, Y., Sun, C.: ‘Adaptive neural impedance control of a robotic manipulator with input saturation’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (3), pp. 334344.
    66. 66)
      • 66. Xie, X., Yue, D., Zhang, H., et al: ‘Control synthesis of discrete-time T–S fuzzy systems via a multi-instant homogenous polynomial approach’, IEEE Trans. Cybern., 2016, 46, (3), pp. 630640.
    67. 67)
      • 67. Yang, C., Li, Z., Cui, R., et al: ‘Neural network-based motion control of an underactuated wheeled inverted pendulum model’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (11), pp. 20042016.
    68. 68)
      • 68. Li, Y., Tee, K.P., Chan, W.L., et al: ‘Continuous role adaptation for human-robot shared control’, IEEE Trans. Robot., 2015, 31, (3), pp. 672681.
    69. 69)
      • 69. Sun, C., He, W., Ge, W., et al: ‘Adaptive neural network control of biped robots’, IEEE Trans. Syst. Man Cybern. Syst., 2016, In Press, DOI: 10.1109/TSMC.2016.2557223.
    70. 70)
      • 70. Li, Z., Su, C.-Y.: ‘Neural-adaptive control of single-master-multiple-slaves teleoperation for coordinated multiple mobile manipulators with time-varying communication delays and input uncertainties’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (9), pp. 14001413.
    71. 71)
      • 71. Li, H., Wu, C., Jing, X., et al: ‘Fuzzy tracking control for nonlinear networked systems’, IEEE Trans. Cybern., 2016, DOI: 10.1109/TCYB.2016.2594046.
    72. 72)
      • 72. Cheng, L., Hou, Z.-G., Tan, M., et al: ‘Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design’, IEEE Trans. Syst. Man Cybern. B, 2012, 42, (5), pp. 14701479.
    73. 73)
      • 73. Liu, Z., Chen, C., Zhang, Y., et al: ‘Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism’, IEEE Trans. Cybern., 2015, 45, (3), pp. 521532.
    74. 74)
      • 74. Selmic, R.R., Lewis, F.L.: ‘Backlash compensation in nonlinear systems using dynamic inversion by neural networks’, Asian J. Control, 2000, 2, (2), pp. 7687.
    75. 75)
      • 75. Jie, G., Xiangdong, L., Xiaozhong, L., et al: ‘Neural networks Preisach model and inverse compensation for hysteresis of piezoceramic actuator’. 2010 8th World Congress on Intelligent Control and Automation (WCICA), July 2010, pp. 57465752.
    76. 76)
      • 76. Seidl, D.R., Lam, S.-L., Putman, J., et al: ‘Neural network compensation of gear backlash hysteresis in position-controlled mechanisms’, IEEE Trans. Ind. Appl., 1995, 31, (6), pp. 14751483.
    77. 77)
      • 77. Li, P., Li, P., Sui, Y.: ‘Adaptive fuzzy hysteresis internal model tracking control of piezoelectric actuators with nanoscale application’, IEEE Trans. Fuzzy Syst., 2016, 24, (5), pp. 12461254.
    78. 78)
      • 78. Liu, Z., Lai, G., Zhang, Y., et al: ‘Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (12), pp. 21292140.
    79. 79)
      • 79. Lewis, F.L., Liu, K., Yesildirek, A.: ‘Neural net robot controller with guaranteed tracking performance’, IEEE Trans. Neural Netw., 1995, 6, (3), pp. 703715.
    80. 80)
      • 80. Li, X., Cheah, C.C.: ‘Adaptive neural network control of robot based on a unified objective bound’, IEEE Trans. Control Syst. Technol., 2014, 22, (3), pp. 10321043.
    81. 81)
      • 81. Kim, Y.H., Lewis, F.L.: ‘Neural network output feedback control of robot manipulators’, IEEE Trans. Robot. Autom., 1999, 15, (2), pp. 301309.
    82. 82)
      • 82. Zhou, W.-D., Liao, C.-Y., Zheng, L.: ‘Adaptive fuzzy output feedback control for a class of nonaffine nonlinear systems with unknown dead-zone input’, Nonlinear Dyn., 2015, 79, (4), pp. 26092621, [Online]. Available: http://dx.doi.org/10.1007/s11071-014-1835-x.
    83. 83)
      • 83. He, W., Ge, S.S.: ‘Vibration control of a flexible beam with output constraint’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 50235030.
    84. 84)
      • 84. Liu, Y.J., Tong, S., Li, D.J., et al: ‘Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint’, IEEE Trans. Fuzzy Syst., 2016, 24, (5), pp. 11471158.
    85. 85)
      • 85. Chen, C.L.P., Wen, G.X., Liu, Y.J., et al: ‘Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems’, IEEE Trans. Cybern., 2016, 46, (7), pp. 15911601.
    86. 86)
      • 86. Liu, Y.-J., Tong, S.-C.: ‘Barrier lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints’, Automatica, 2016, 64, (2), pp. 7075.
    87. 87)
      • 87. Tee, K.P., Ge, S.S.: ‘Control of fully actuated ocean surface vessels using a class of feedforward approximators’, IEEE Trans. Control Syst. Technol., 2006, 14, (4), pp. 750756.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1058
Loading

Related content

content/journals/10.1049/iet-cta.2016.1058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address