access icon free Input-delay approach to sampled-data control of polynomial systems based on a sum-of-square analysis

In this study, the authors develop an stabilisation condition for polynomial sampled-data control systems with respect to an external disturbance. Generally, continuous-time and sampled state variables are mixed in polynomial sampled-data control systems, which is the main drawback to numerically solving the stabilisation conditions of these control systems. To overcome this drawback, this study proposes novel stabilisation conditions that address the mixed-states problem by casting the mixed states as a time-varying uncertainty. The stabilisation conditions are derived from a newly proposed polynomial time-dependent Lyapunov–Krasovskii functional and are represented as a sum-of-squares, which can be solved using existing numerical solvers. Some additional slack variables are further introduced to relax the conservativeness of the authors' proposed approach. Finally, some simulation examples are provided to demonstrate the effectiveness of their approach.

Inspec keywords: continuous time systems; delays; uncertain systems; sampled data systems; H∞ control; Lyapunov methods; time-varying systems; stability

Other keywords: mixed-states problem; polynomial time-dependent Lyapunov-Krasovskii functional; numerical solvers; sampled state variables; sum-of-square analysis; external disturbance; input-delay approach; time-varying uncertainty; H∞ stabilisation condition; continuous-time variables; slack variables; polynomial sampled-data control systems

Subjects: Time-varying control systems; Stability in control theory; Discrete control systems; Optimal control; Distributed parameter control systems

References

    1. 1)
      • 6. Prajna, S., Papachristodoulou, A., Fen, W.: ‘Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach’. Proc. Asian Control Conf., 2004, pp. 157165.
    2. 2)
      • 19. Kim, H.J., Koo, G.B., Park, J.B., et al: ‘Decentralized sampled-data H fuzzy filter for nonlinear large-scale systems’, Fuzzy Sets Syst., 2015, 273, pp. 6886.
    3. 3)
      • 17. Kim, D.W., Lee, H.J., Tomizuka, M.: ‘Fuzzy stabilization of nonlinear systems under sampled-data feedback: an exact discrete-time model approach’, IEEE Trans. Fuzzy Syst., 2010, 18, (2), pp. 251260.
    4. 4)
      • 15. Zhang, X.M., Han, Q.L., Yu, X.: ‘Survey on recent advances in networked control system’, IEEE Trans. Ind. Inf., 2016, 12, (5), pp. 17401752.
    5. 5)
      • 29. Strum, J.F.: ‘Using SeDuMi 1.02, a MATLAB tool-box for optimization over symmetric cones’, Opt. Method Soft., 1999, 11, pp. 625653.
    6. 6)
      • 24. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: ‘Exponential stability of impulsive systems with application to uncertain sampled-data systems’, Syst. Control Lett., 2008, 57, pp. 378385.
    7. 7)
      • 28. Lofberg, J.: ‘YALMIP : a toolbox for modeling and optimization in MATLAB’. IEEE Int. Symp. Computer Aided Control System Design, 2004, pp. 284289.
    8. 8)
      • 25. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, NJ, 2001).
    9. 9)
      • 16. Lee, D.H., Joo, Y.H.: ‘LMI-based robust sampled-data stabilization of polytopic LTI systems: a truncated power series expansion approach’, Int. J. Control Autom. Syst., 2015, 13, (2), pp. 284291.
    10. 10)
      • 2. Ebenbauer, C., Renz, J., Allgower, F.: ‘Polynomial feedback and observer design using nonquadratic Lyapunov functions’. Proc. Joint IEEE Conf. Decision and Control and European Control Conf., 2005, pp. 75877592.
    11. 11)
      • 3. Ichihara, H.: ‘Optimal control for polynomial systems using matrix sum of squares relaxations’, IEEE Trans. Autom. Control, 2009, 54, (5), pp. 10481053.
    12. 12)
      • 30. Koo, G.B., Park, J.B., Joo, Y.H.: ‘LMI condition for sampled-data fuzzy control of nonlinear systems’, IET Electr. Lett., 2015, 51, (1), pp. 2931.
    13. 13)
      • 22. Hu, L.S., Bai, T., Shi, P., et al: ‘Sampled-data control of networked linear control systems’, Automatica, 2007, 43, pp. 903911.
    14. 14)
      • 18. Kim, D.W., Lee, H.J.: ‘Sampled-data observer-based output-feedback fuzzy stabilization of nonlinear systems: exact discrete-time design approach’, Fuzzy Sets Syst., 2012, 201, pp. 2039.
    15. 15)
      • 23. Lu, J.G., Hill, D.J.: ‘Global asymptotical synchronization of chaotic Lur'e systems using sampled data: a linear matrix inequality approach’, IEEE Trans. Circuit Syst., 2008, 55, (6), pp. 586590.
    16. 16)
      • 11. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: ‘Nonlinear and adaptive control design’ (Wiley, NY, 1995).
    17. 17)
      • 9. Ataei-Esfahani, A., Wang, Q.: ‘Nonlinear control design of a hypersonic aircraft using sum-of-squares method’. American Control Conf., 2007, pp. 52785283.
    18. 18)
      • 31. Tanaka, K, Ikeda, T., Wang, H.O.: ‘Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizbility, H control theory, and linear matrix inequality’, IEEE Trans. Fuzzy Syst., 1996, 40, (1), pp. 113.
    19. 19)
      • 20. Fridman, E., Seuret, A., Richard, J.P.: ‘Robust sampled-data stabilization of linear systems: an input delay approach’, Automatica, 2004, 40, (8), pp. 14411446.
    20. 20)
      • 27. Zhang, X.M., Han, Q.L.: ‘Event-based H filtering for sampled-data systems’, Automatica, 2015, 51, pp. 5569.
    21. 21)
      • 26. Lam, H.K.: ‘Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach’, IEEE Trans. Syst. Man Cybern., 2012, 42, (1), pp. 258267.
    22. 22)
      • 10. Tayebi, A., McGilvray, S.: ‘Attitude stabilization of a VTOL quadrotor aircraft’, IEEE Trans. Control Syst. Technol., 2006, 14, (3), pp. 562571.
    23. 23)
      • 13. Ichihara, H., Nobuyama, E.: ‘How to use SOSTOOLS together with matrix patch’. Proc. SICE Annual Conf., 2005, pp. 38063810.
    24. 24)
      • 1. Chesi, G.: ‘Computing output feedback controllers to enlarge the domain of attraction in polynomial systems’, IEEE Trans. Autom. Control, 2004, 49, (10), pp. 18461850.
    25. 25)
      • 14. Prajna, S., Papachristodoulou, A., Seiler, P., et al: ‘SOSTOOLS: sum of squares optimization toolbox for MATLAB’ (California Inst. Tech., 2004).
    26. 26)
      • 5. Kim, H.S., Park, J.B., Joo, Y.H.: ‘Further relaxed stability conditions for continuous-time polynomial fuzzy system based on polynomial fuzzy Lyapunov function’. FUZZ-IEEE, 2012, pp. 18281832.
    27. 27)
      • 7. Saat, S., Huang, D., Nguang, S.K., et al: ‘Nonlinear state feedback control for a class of polynomial nonlinear discrete-time systems with norm-bounded uncertainties: an integrator approach’, J. Franklin Inst., 2013, 350, (7), pp. 17391752.
    28. 28)
      • 4. Jarvis-Wloszek, Z., Feeley, R., Tan, W., et al: ‘Some controls applications of sum of squares programming’. Proc. IEEE Conf. Decision and Control, 2003, pp. 46764681.
    29. 29)
      • 8. Saat, S., Nguang, S.K.: ‘Nonlinear H output feedback control with integrator for polynomial discrete-time systems’, Int. J. Robust Nonlinear Control, 2013, 25, (7), pp. 10511065.
    30. 30)
      • 21. Fridman, E.: ‘A refined input delay approach to sampled-data control’, Automatica, 2010, 46, (2), pp. 421427.
    31. 31)
      • 12. Lee, H.J., Park, J.B., Joo, Y.H.: ‘Robust fuzzy control of nonlinear systems with parametric uncertainties’, IEEE Trans. Fuzzy Syst., 2001, 9, (2), pp. 369379.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1037
Loading

Related content

content/journals/10.1049/iet-cta.2016.1037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading