Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter

The parameter estimation problem for multi-input multi-output Hammerstein systems is considered. For the Hammerstein model to be identified, its dynamic time-invariant subsystem is described by a controlled autoregressive model with a communication delay. The modified Kalman filter (MKF) algorithm is derived to estimate the unknown intermediate variables in the system and the MKF-based recursive least squares (LS) algorithm is presented to estimate all the unknown parameters. Furthermore, the hierarchical identification is adopted to decompose the system into two fictitious subsystems: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear subsystem. Then an MKF-based hierarchical LS algorithm is derived. The convergence analysis shows the performance of the presented algorithms. The numerical simulation results indicate that the proposed algorithms are effective.

References

    1. 1)
      • 46. Wang, X.H., Ding, F.: ‘Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle’, Signal Process., 2015, 117, pp. 208218.
    2. 2)
      • 35. Ljung, L.: ‘System identification: theory for the user’ (Prentice Hall, Englewood Cliffs, NJ, 1999, 2nd edn.).
    3. 3)
      • 47. Feng, L., Wu, M.H., Li, Q.X., et al: ‘Array factor forming for image reconstruction of one-dimensional nonuniform aperture synthesis radiometers’, IEEE Geosci. Remote Sensing Lett., 2016, 13, (2), pp. 237241.
    4. 4)
      • 25. Hong, S., Lee, C., Borrelli, F., et al: ‘A novel approach for vehicle inertial parameter identification using a dual Kalman filter’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (1), pp. 151161.
    5. 5)
      • 38. Liu, Y.J., Ding, F.: ‘Convergence properties of the least squares estimation algorithm for multivariable systems’, Appl. Math. Model., 2013, 37, (1–2), pp. 476483.
    6. 6)
      • 26. Azam, S.E., Chatzi, E., Papadimitriou, C.: ‘A dual Kalman filter approach for state estimation via output–only acceleration measurements’, Mech. Syst. Signal Process., 2015, 60–61, pp. 866886.
    7. 7)
      • 41. Lakshminarayanan, S., Shah, S.L., Nandakumar, K.: ‘Identification of Hammerstein models using multivariate statistical tools’, Chem. Eng. Sci., 1995, 50, (22), pp. 35993613.
    8. 8)
      • 27. Stetzel, K.D., Aldrich, L.L., Trimboli, M.S., et al: ‘Electrochemical state and internal variables estimation using a reduced–order physics–based model of a lithium–ion cell and an extended Kalman filter’, J. Power Sources, 2015, 278, pp. 490505.
    9. 9)
      • 12. Ding, F., Xu, L., Zhu, Q.M.: ‘Performance analysis of the generalized projection identification for time-varying systems’, IET Control Theory Appl., 2016, 10, (18), pp. 25062514.
    10. 10)
      • 24. Zhao, S., Huang, B., Liu, F.: ‘Minimum variance unbiased FIR filter for discrete time-variant systems’, Automatica, 2015, 53, (3), pp. 355361.
    11. 11)
      • 20. Zhang, J., Welch, G., Bishop, G., et al: ‘A two–stage kalman filter approach for robust and real–time power system state estimation’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 629636.
    12. 12)
      • 18. Ding, F.: ‘Hierarchical parameter estimation algorithms for multivariable systems using measurement information’, Inf. Sci., 2014, 277, pp. 396405.
    13. 13)
      • 37. Wang, Y.J., Ding, F.: ‘The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique’, Signal Process., 2016, 128, pp. 212221.
    14. 14)
      • 49. Wang, T.Z., Wu, H., Ni, M.Q., et al: ‘An adaptive confidence limit for periodic non-steady conditions fault detection’, Mech. Syst. Signal Process., 2016, 72–73, pp. 328345.
    15. 15)
      • 14. Xu, L., Ding, F.: ‘The parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle’, IET Signal Process., 2017, 11, doi: 10.1049/iet-spr.2016.0220.
    16. 16)
      • 30. Wang, D.Q.: ‘Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models’, Appl. Math. Lett., 2016, 57, pp. 1319.
    17. 17)
      • 23. Zhao, S., Shmaliy, Y.S., Liu, F.: ‘Fast Kalman-like optimal unbiased FIR filtering with applications’, IEEE Trans. Signal Process., 2016, 64, (9), pp. 22842297.
    18. 18)
      • 16. Xu, L., Ding, F.: ‘Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling’, Circuits Syst. Signal Process., 2017, 36, doi: 10.1007/s00034-016-0378-4.
    19. 19)
      • 21. Pan, J., Yang, X.H., Cai, H.F., et al: ‘Image noise smoothing using a modified Kalman filter’, Neurocomputing, 2016, 173, pp. 16251629.
    20. 20)
      • 10. Wang, D.Q., Zhang, W.: ‘Improved least squares identification algorithm for multivariable Hammerstein systems’, J. Franklin Inst., 2015, 352, (11), pp. 52925307.
    21. 21)
      • 9. Wang, Y.J., Ding, F.: ‘The filtering based iterative identification for multivariable systems’, IET Control Theory Applic., 2016, 10, (8), pp. 894902.
    22. 22)
      • 3. Xu, L.: ‘A proportional differential control method for a time-delay system using the Taylor expansion approximation’, Appl. Math. Comput., 2014, 236, pp. 391399.
    23. 23)
      • 48. Wang, T.Z., Qi, J., Xu, H., et al: ‘Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter’, ISA Trans., 2016, 60, pp. 156163.
    24. 24)
      • 40. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (Johns Hopkins University Press, Baltimore, MD, 1996, 3rd edn.).
    25. 25)
      • 2. Roman, R.C., Radac, M.B., Precup, R.E.: ‘Multi–input–multi–output system experimental validation of model-free control and virtual reference feedback tuning techniques’, IET Control Theory Applic., 2016, 10, (12), pp. 13951403.
    26. 26)
      • 42. Shen, Q., Ding, F.: ‘Iterative identification methods for input nonlinear multivariable systems using the key-term separation principle’, J. Franklin Inst., 2015, 352, (7), pp. 28472865.
    27. 27)
      • 34. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering prediction and control’ (Prentice Hall, Englewood Cliffs, NJ, 1984).
    28. 28)
      • 6. Wang, Y.J., Ding, F.: ‘Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model’, Automatica, 2016, 71, pp. 308313.
    29. 29)
      • 31. Eskinat, E., Johnson, S.H., Luyben, W.L.: ‘Use of Hammerstein models in identification of nonlinear systems’, AIChE J., 1991, 37, (2), pp. 255268.
    30. 30)
      • 11. van der Veen, G., van Wingerden, J.W., Verhaegen, M.: ‘Global identification of wind turbines using a Hammerstein identification method’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 14711478.
    31. 31)
      • 8. Gibson, S., Ninness, B.: ‘Robust maximum–likelihood estimation of multivariable dynamic systems’, Automatica, 2005, 41, (10), pp. 16671682.
    32. 32)
      • 15. Engel, Y., Mannor, S., Meir, R.: ‘The kernel recursive least-squares algorithm’, IEEE Trans. Signal Process., 2004, 52, (8), pp. 22752285.
    33. 33)
      • 39. Wang, X.H., Ding, F.: ‘Convergence of the recursive identification algorithms for multivariate pseudo–linear regressive systems’, Int. J. Adapt. Control Signal Process., 2016, 30, (6), pp. 824842.
    34. 34)
      • 45. Mao, Y.W., Ding, F.: ‘Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique’, Nonlinear Dyn., 2015, 79, (3), pp. 17451755.
    35. 35)
      • 44. Mao, Y.W., Ding, F.: ‘A novel parameter separation based identification algorithm for Hammerstein systems’, Appl. Math. Lett., 2016, 60, pp. 2127.
    36. 36)
      • 29. Jafari, M., Salimifard, M., Dehghani, M.: ‘Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm’, ISA Trans., 2014, 53, (4), pp. 12431252.
    37. 37)
      • 1. Jafari, S., Ioannou, P.A.: ‘Robust adaptive attenuation of unknown periodic disturbances in uncertain multi-input multi-output systems’, Automatica, 2016, 70, pp. 3242.
    38. 38)
      • 17. Cao, Y., Liu, Z.: ‘Signal frequency and parameter estimation for power systems using the hierarchical identification principle’, Math. Comput. Model., 2010, 52, (5), pp. 854861.
    39. 39)
      • 33. Ding, F.: ‘System identification—performances analysis for identification methods’ (Science Press, Beijing, 2014).
    40. 40)
      • 43. Xu, L.: ‘The damping iterative parameter identification method for dynamical systems based on the sine signal measurement’, Signal Process., 2016, 120, pp. 660667.
    41. 41)
      • 4. Xu, L.: ‘Application of the Newton iteration algorithm to the parameter estimation for dynamical systems’, J. Comput. Appl. Math., 2015, 288, pp. 3343.
    42. 42)
      • 5. Xu, L., Chen, L., Xiong, W.L.: ‘Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration’, Nonlinear Dyn., 2015, 79, (3), pp. 21552163.
    43. 43)
      • 36. Ding, F., Gu, Y.: ‘Performance analysis of the auxiliary model based least squares identification algorithm for one–step state delay systems’, Int. J. Comput. Math., 2012, 89, (15), pp. 20192028.
    44. 44)
      • 32. Le, F., Markovsky, I., Freeman, C.T., et al: ‘Recursive identification of Hammerstein systems with application to electrically stimulated muscle’, Control Eng. Pract., 2012, 20, (4), pp. 386396.
    45. 45)
      • 7. Pan, J., Jiang, X., Wan, X.K., et al: ‘A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems’, Int. J. Control Autom. Syst., 2016, 15, doi: 10.1007/s12555-016-0081-z.
    46. 46)
      • 28. Zhang, W.G.: ‘Decomposition based least squares iterative estimation for output error moving average systems’, Eng. Comput., 2014, 31, (4), pp. 709725.
    47. 47)
      • 13. Wan, X.K., Li, Y., Xia, C., et al: ‘A T-wave alternans assessment method based on least squares curve fitting technique’, Measurement, 2016, 86, pp. 93100.
    48. 48)
      • 19. Wang, C., Zhu, L.: ‘Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory’, J. Franklin Inst., 2015, 352, (10), pp. 46244637.
    49. 49)
      • 22. Simon, D.: ‘Kalman filtering with state constraints: a survey of linear and nonlinear algorithms’, IET Control Theory Applic., 2010, 4, (8), pp. 13031318.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1033
Loading

Related content

content/journals/10.1049/iet-cta.2016.1033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address