Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Relaxed stability and stabilisation conditions for continuous-time Takagi–Sugeno fuzzy systems using multiple-parameterised approach

This study deals with the problem of stability analysis and control design for continuous-time Takagi–Sugeno fuzzy systems. Based on generalised fuzzy Lyapunov function (FLF) and fuzzy controller, relaxed stability and stabilisation conditions in terms of linear matrix inequalities are obtained. The generalised FLF is homogeneous polynomially parameter dependent on MFs with arbitrary degree. As the degree of the Lyapunov function increases, the conservatism of the obtained stability and stabilisation conditions is gradually reduced. In addition, it can be proved that the conditions generated in this study can include the existing ones found in the literature as special cases. Compared with the existing methods, no additional slack variables are introduced in stability analysis, and hence the same or less conservative results can be obtained with a lower computational cost. Numerical examples illustrate the effectiveness of the proposed method.

References

    1. 1)
      • 36. Lee, D.H., Park, J.B., Joo, Y.H.: ‘Improvement on nonquadratic stabilization of discrete-time Takagi–Sugeno fuzzy systems: multiple-parameterization approach’, IEEE Trans. Fuzzy Syst., 2010, 18, (2), pp. 425429.
    2. 2)
      • 1. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE Trans. Syst. Man Cybern. B Cybern., 1985, 15, (1), pp. 116132.
    3. 3)
      • 26. Guerra, T.M., Bernal, M., Guelton, K., et al: ‘Non-quadratic local stabilization for continuous-time Takagi–Sugeno models’, Fuzzy Sets Syst., 2012, 201, pp. 4054.
    4. 4)
      • 25. Pan, J.T., Guerra, T.M., Fei, S.M., et al: ‘Non-quadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach’, IEEE Trans. Fuzzy Syst., 2012, 20, (3), pp. 594602.
    5. 5)
      • 23. Zhang, H.G., Xie, X.P.: ‘Relaxed stability conditions for continuous-time T–S fuzzy-control systems via augmented multi-indexed matrix approach’, IEEE Trans. Fuzzy Syst., 2011, 19, (3), pp. 478492.
    6. 6)
      • 38. Antonio, S., Carlos, A.: ‘Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya's theorem’, Fuzzy Sets Syst., 2007, 158, (24), pp. 26712686.
    7. 7)
      • 2. Kim, E., Lee, H.: ‘New approaches to relaxed quadratic stability condition of fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2000, 8, (5), pp. 523534.
    8. 8)
      • 20. Mozelli, L.A., Palhares, R.M., Souza, F.O., et al: ‘Reducing conservativeness in recent stability conditions of TS fuzzy systems’, Automatica, 2009, 45, (6), pp. 15801583.
    9. 9)
      • 21. Flaria, F.A., Silva, G.N., Oliveira, V.A.: ‘Reducing the conservatism of LMI-based stabilisation conditions for TS fuzzy systems using fuzzy Lyapunov functions’, Int. J. Syst. Sci., 2013, 44, (10), pp. 19561969.
    10. 10)
      • 6. Li, F., Shi, P., Wu, L., et al: ‘Fuzzy-model-based Dstability and non-fragile control for discrete-time descriptor systems with multiple delays’, IEEE Trans. Fuzzy Syst., 2014, 22, (4), pp. 10191025.
    11. 11)
      • 22. Lee, D.H., Park, J.B., Joo, Y.H.: ‘A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi–Sugeno fuzzy systems’, Inf. Sci., 2012, 185, (1), pp. 230248.
    12. 12)
      • 4. Lam, H.K., Leung, F.H.F.: ‘LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi–Sugeno's form’, IEEE Trans. Syst. Man Cybern. B Cybern., 2008, 37, (5), pp. 13961406.
    13. 13)
      • 18. Ding, B.C., Sun, H.X., Yang, P.: ‘Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi–Sugeno's form’, Automatica, 2006, 42, (3), pp. 503508.
    14. 14)
      • 40. Delmotte, F., Guerra, T.M., Ksantini, M.: ‘Continuous Takagi–Sugeno's models: reduction of the number of LMI conditions in various fuzzy control design technics’, IEEE Trans. Fuzzy Syst., 2007, 15, (3), pp. 426438.
    15. 15)
      • 5. Lam, H.K., Li, H., Liu, H.: ‘Stability analysis and control synthesis for fuzzy-observer-based controller of nonlinear systems: a fuzzy-model-based control approach’, IET Control Theory Appl., 2013, 7, (5), pp. 663672.
    16. 16)
      • 39. Oliveira, M.C., Skelton, R.E.: ‘Stability tests for constrained linear systems’, in ‘Prespective in robust control’ (Lecture Notes in Control and Information Sciences, 286) (Springer-Verlag, Berlin, 2001), pp. 241257.
    17. 17)
      • 9. Li, H., Pan, Y., Yu, Z., et al: ‘Fuzzy output-feedback control for non-linear systems with input time-varying delay’, IET Control Theory Appl., 2014, 8, (9), pp. 738745.
    18. 18)
      • 29. Rhee, B.J., Won, S.: ‘A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design’, Fuzzy Sets Syst., 2006, 157, (9), pp. 12111228.
    19. 19)
      • 3. Fang, C.H., Liu, Y.S., Kau, S.W., et al: ‘A new LMI-based approach to relaxed quadratic stabilization of T–S fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (3), pp. 386397.
    20. 20)
      • 34. Ding, B.C.: ‘Homogeneous polynomially nonquadratic stabilization of discrete-time Takagi–Sugeno systems via nonparallel distributed compensation law’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 9941000.
    21. 21)
      • 32. Guerra, T.M., Kruszewski, A., Bernal, M.: ‘Control law proposition for the stabilization of discrete Takagi–Sugeno models’, IEEE Trans. Fuzzy Syst., 2009, 179, (3), pp. 724731.
    22. 22)
      • 24. Bernal, M., Guerra, T.M.: ‘Generalized nonquadratic stability of continuous-time Takagi–Sugeno models’, IEEE Trans. Fuzzy Syst., 2010, 18, (4), pp. 815822.
    23. 23)
      • 19. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (John Wiley and Sons Press, 2004).
    24. 24)
      • 16. Tanaka, K., Iwasaki, M., Wang, H.O.: ‘A multiple Lyapunov function approach to stabilization of fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2003, 11, (4), pp. 582589.
    25. 25)
      • 28. Wang, L.K., Peng, J.L., Liu, X.D., et al: ‘Further study on local stabilization of continuous-time nonlinear systems presented as Takagi–Sugeno fuzzy model’, J. Intell. Fuzzy Syst., 2015, 29, (1), pp. 283292.
    26. 26)
      • 11. Wang, L.K., Liu, X.D.: ‘Local analysis of continuous-time Takagi–Sugeno fuzzy system with disturbances bounded by magnitude or energy: a Lagrange multiplier method’, Inf. Sci., 2013, 248, pp. 89102.
    27. 27)
      • 17. Guerra, T.M., Vermeiren, L.: ‘LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno's form’, Automatica, 2004, 40, (5), pp. 823829.
    28. 28)
      • 27. Wang, L.K., Liu, X.D.: ‘Local analysis of continuous-time Takagi–Sugeno fuzzy system with disturbances bounded by magnitude or energy: a lagrange multiplier method’, Inf. Sci., 2013, 248, pp. 89102.
    29. 29)
      • 14. Tanaka, K., Iwasaki, M., Wang, H.O.: ‘Switching control of an R/C hovercraft: stabilization and smooth switching’, IEEE Trans. Fuzzy Syst., 1998, 6, (2), pp. 250265.
    30. 30)
      • 12. Shi, P., Yin, Y., Liu, F., et al: ‘Robust control on saturated markov jump systems with missing information’, Inf. Sci., 2013, 256, pp. 123138.
    31. 31)
      • 13. Wang, L., Wang, W.: ‘H Fault detection for two-dimensional T–S fuzzy systems in FM second model’, Asian J. Control, 2015, 17, (2), pp. 554568.
    32. 32)
      • 35. Wang, L.K., Liu, X.D.: ‘Parameter-varying state feedback control for discrete-time polytopic systems’, Int. J. Syst. Sci., 2011, 42, (6), pp. 9971005.
    33. 33)
      • 31. Kruszewski, A., Wang, R., Guerra, T.M.: ‘Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: a new approach’, IEEE Trans. Autom. Control, 2008, 53, (2), pp. 606611.
    34. 34)
      • 37. Zou, T., Yu, H.B.: ‘Asymptotically necessary and sufficient stability conditions for discrete-time Takagi–Sugeno model: Extended applications of Polya's theorem and homogeneous polynomials’, J. Franklin Inst., 2014, 351, (2), pp. 922940.
    35. 35)
      • 15. Feng, G.: ‘Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions’, IEEE Trans. Fuzzy Syst, 2003, 11, (5), pp. 605612.
    36. 36)
      • 8. Xie, X.P., Hu, S.L.: Relaxed stability criteria for discrete-time Takagi–Sugeno fuzzy systems via new augmented nonquadratic Lyapunov functions', Neurocomputing, 2015, 166, pp. 416421.
    37. 37)
      • 30. Mozelli, L.A., Palhares, R.M., Avellar, G.S.C.: ‘A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems’, Inf. Sci., 2009, 179, (8), pp. 11491162.
    38. 38)
      • 7. Liu, X.D., Zhang, Q.L.: New approaches to H controller designs based on fuzzy observers for T–S fuzzy systems via LMI', Automatica, 2003, 39, (9), pp. 15711582.
    39. 39)
      • 33. Guerra, T.M., Kerkeni, H., Lauber, J., et al: ‘An efficient Lyapunov function for discrete T–S models: observer design’, IEEE Trans. Fuzzy Syst., 2012, 20, (1), pp. 187192.
    40. 40)
      • 10. Li, F., Shi, P., Wu, L., et al: ‘A novel approach to output feedback control of fuzzy stochastic systems’, Automatica, 2014, 50, (2), pp. 32683275.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1017
Loading

Related content

content/journals/10.1049/iet-cta.2016.1017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address