access icon free Adaptive quantised observer-based output feedback control for non-linear systems with input and output quantisation

This study investigates the case of simultaneous input and output quantisation for a class of non-linear output feedback systems subject to uncertain non-linear dynamics and non-zero initial states. An adaptive quantised observer-based output feedback controller is designed to guarantee bounded stability and H performance despite input and output quantisation. In comparison with the existing work, the main contributions of this study are that: (i) an important lemma is proposed to remove the matrix equality constraint used in many existing results, and three new design methods in strict terms of linear matrix inequality techniques are proposed; (ii) this study focuses on eliminating the impact of both input and output quantisation errors. Since the impact of input and output quantisation errors cannot be fully eliminated, the estimation error is proved to be ultimately bounded and to converge to a residual set; and (iii) an adaptive compensation term is constructed to compensate for the time-variant effects caused by non-linear dynamics and uncertain parameter vectors. Finally, two numerical examples are given to show the efficacy and advantages of the proposed methods.

Inspec keywords: adaptive control; control system synthesis; observers; H∞ control; nonlinear control systems; linear matrix inequalities; feedback

Other keywords: uncertain nonlinear dynamics; nonlinear output feedback system; input and output quantisation; controller design; adaptive quantised H∞observer-based output feedback control; linear matrix inequality techniques; time-variant effects

Subjects: Self-adjusting control systems; Optimal control; Control system analysis and synthesis methods; Simulation, modelling and identification; Algebra; Nonlinear control systems

References

    1. 1)
      • 2. Guo, X.G., Yang, G.H.: ‘Delay-dependent reliable H filtering for sector-bounded nonlinear continuous-time systems with time-varying state delays and sensor failures’, Int. J. Syst. Sci., 2012, 43, (1), pp. 117131.
    2. 2)
      • 25. Park, B.Y., Yun, S.W., Park, P.: ‘H control of continuous-time uncertain linear systems with quantized-input saturation and external disturbances’, Nonlinear Dyn., 2015, 79, (4), pp. 24572467.
    3. 3)
      • 6. Niu, Y., Jia, T., Wang, X., et al: ‘Output-feedback control design for NCSs subject to quantization and dropout’, Inf. Sci., 2009, 179, (21), pp. 38043813.
    4. 4)
      • 22. Yun, S.W., Choi, Y.J., Park, P.: ‘H2 control of continuous-time uncertain linear systems with input quantization and matched disturbances’, Automatica, 2009, 45, (10), pp. 24352439.
    5. 5)
      • 34. Gao, S., Dong, H., Lyu, S., et al: ‘Truncated adaptation design for decentralized neural dynamic surface control of interconnected nonlinear systems under input saturation’, Int. J. Control, 2016, 89, (7), pp. 14471466.
    6. 6)
      • 36. Gao, S., Dong, H., Ning, B., et al: ‘Neural adaptive control for uncertain nonlinear system with input saturation: state transformation based output feedback’, Neurocomputing, 2015, 159, (3), pp. 117125.
    7. 7)
      • 12. Qiu, J., Feng, G., Gao, H.: ‘Observer-based piecewise affine output feedback controller synthesis of continuous-time T–S fuzzy affine dynamic systems using quantized measurements’, IEEE Trans. Fuzzy Syst., 2012, 20, (6), pp. 10461062.
    8. 8)
      • 21. Han, Q.L., Liu, Y., Yang, F.: ‘Optimal communication network-based H quantized control with packet dropouts for a class of discrete-time neural networks with distributed time delay’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (2), pp. 426434.
    9. 9)
      • 4. Liu, C., Hao, F.: ‘Dynamic output-feedback control for linear systems by using event-triggered quantisation’, IET Control Theory Appl., 2015, 9, (8), pp. 12541263.
    10. 10)
      • 26. Zhai, G., Matsumoto, Y., Chen, X., et al: ‘Hybrid stabilization of discrete-time LTI systems with two quantized signals’, Int. J. Appl. Math. Comput. Sci., 2005, 15, (4), pp. 509516.
    11. 11)
      • 9. Tian, E., Yue, D., Peng, C.: ‘Quantized output feedback control for networked control systems’, Inf. Sci., 2008, 178, (12), pp. 27342749.
    12. 12)
      • 30. Niu, Y.G., Ho, D.W.C.: ‘Control strategy with adaptive quantizer's parameters under digital communication channels’, Automatica, 2014, 50, (10), pp. 26652671.
    13. 13)
      • 40. Jin, X.Z., Yang, G.H., Chang, X.H., et al: ‘Robust fault-tolerant H control with adaptive compensation’, Acta Autom. Sin., 2013, 39, (1), pp. 3142.
    14. 14)
      • 24. Zheng, B.C., Yang, G.H., Li, T.: ‘Quantised feedback sliding mode control of linear uncertain systems’, IET Control Theory Appl., 2014, 8, (7), pp. 479487.
    15. 15)
      • 7. Lu, R., Xu, Y., Xue, A., et al: ‘Networked control with state reset and quantized measurements: observer-based case’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 52065213.
    16. 16)
      • 28. Jiang, B., Staroswiecki, M., Cocquempot, V.: ‘Fault accommodation for nonlinear dynamic systems’, IEEE Trans. Autom. Control, 2006, 51, (9), pp. 15781583.
    17. 17)
      • 16. Li, X.J., Yang, G.H.: ‘Adaptive H control in finite frequency domain for uncertain linear systems‘’, Inf. Sci., 2015, 314, pp. 1427.
    18. 18)
      • 33. Guo, X.G., Wang, J.L., Liao, F., et al: ‘Distributed adaptive integrated sliding mode controller synthesis for string stability of vehicle platoons’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (9), pp. 24192429.
    19. 19)
      • 18. Guo, X.G., Wang, J.L., Liao, F., et al: ‘Quantized H consensus of multi-agent systems with quantization mismatch under switching weighted topologies’, IEEE Trans. Control Netw. Syst., 2015, Available Online, DOI: 10.1109/TCNS.2015.2489338.
    20. 20)
      • 5. Lien, C.H.: ‘Robust observer-based control of systems with state perturbations via LMI approach’, IEEE Trans. Autom. Control, 2004, 49, (8), pp. 13651370.
    21. 21)
      • 1. Yan, X.G., Spurgeon, S.K., Edwards, C.: ‘Memoryless static output feedback sliding mode control for nonlinear systems with delayed disturbances’, IEEE Trans. Autom. Control, 2014, 59, (7), pp. 19061912.
    22. 22)
      • 19. Ahn, C.K., Wu, L., Shi, P.: ‘Stochastic stability analysis for 2-D Roesser systems with multiplicative noise’, Automatica, 2016, 69, pp. 356363.
    23. 23)
      • 14. Derakhshan, S.F., Fatehi, A., Sharabiany, M.G.: ‘Nonmonotonic observer-based fuzzy controller designs for discrete time T–S fuzzy systems via LMI’, IEEE Trans. Cybern., 2014, 44, (12), pp. 25572567.
    24. 24)
      • 32. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, NJ, 2002).
    25. 25)
      • 11. Lin, C., Wang, Q.G., Lee, T.H., et al: ‘Observer-based H control for T–S fuzzy systems with time delay: delay-dependent design method’, IEEE Trans. Syst. Man Cybern. B Cybern., 2007, 37, (4), pp. 10301038.
    26. 26)
      • 27. Coutinho, D.F., Fu, M., de Souza, C.E.: ‘Input and output quantized feedback linear systems’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 761766.
    27. 27)
      • 20. Liu, Z., Wang, F., Zhang, Y., et al: ‘Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems’, IEEE Trans. Cybern., 2016, 46, (2), pp. 524534.
    28. 28)
      • 8. Liu, M., Cao, X., Zhang, S., et al: ‘Sliding mode control of quantized systems against bounded disturbances’, Inf. Sci., 2014, 274, pp. 261272.
    29. 29)
      • 39. Ayati, M., Khaloozadeh, H.: ‘Designing a novel adaptive impulsive observer for nonlinear continuous systems using LMIs’, IEEE Trans. Circuits Syst. Regul. Pap., 2012, 59, (1), pp. 179187.
    30. 30)
      • 31. Phat, V.N., Fernando, T., Trinh, H.: ‘Observer-based control for time-varying delay neural networks with nonlinear observation’, Neural Comput. Appl., 2014, 24, (7–8), pp. 16391645.
    31. 31)
      • 38. Ahn, C.K., Shi, P., Basin, M.V.: ‘Two-dimensional dissipative control and filtering for Roesser model’, IEEE Trans. Autom. Control, 2015, 60, (7), pp. 17451759.
    32. 32)
      • 23. Zheng, B.C., Yang, G.H.: ‘H2 control of linear uncertain systems considering input quantization with encoder/decoder mismatch’, ISA Trans., 2013, 52, (5), pp. 577582.
    33. 33)
      • 3. Guo, X.G., Gao, Q., Xu, Z.: ‘Synthesis of low-coefficient sensitivity controllers with respect to multiplicative controller coefficient variations’, IET Control Theory Appl., 2015, 9, (1), pp. 120128.
    34. 34)
      • 29. Rajamani, R., Cho, Y.M.: ‘Existence and design of observers for nonlinear systems: relation to distance to unobservability’, Int. J. Control, 1998, 69, (5), pp. 717731.
    35. 35)
      • 15. Jiang, Z.P., Jiang, Y.: ‘Robust adaptive dynamic programming for linear and nonlinear systems: an overview’, Eur. J. Control, 2013, 19, (5), pp. 417425.
    36. 36)
      • 37. Guo, X.G., Wang, J.L., Liao, F., et al: ‘Distributed adaptive sliding mode control strategy for vehicle-following systems with nonlinear acceleration uncertainties’, IEEE Trans. Veh. Technol., 2016, Available at: DOI: 10.1109/TVT.2016.2556938.
    37. 37)
      • 13. Dong, J., Wang, Y., Yang, G.H.: ‘Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems’, IEEE Trans. Syst. Man Cybern. B Cybern., 2010, 40, (6), pp. 14471459.
    38. 38)
      • 17. Liberzon, D.: ‘Hybrid feedback stabilization of systems with quantized signals’, Automatica, 2003, 39, (9), pp. 15431554.
    39. 39)
      • 10. Chang, X.H., Yang, G.H.: ‘New results on output feedback control for linear discrete-time systems’, IEEE Trans. Autom. Control, 2014, 59, (5), pp. 13551359.
    40. 40)
      • 35. Gao, S., Dong, H., Ning, B., et al: ‘Neural adaptive control for uncertain MIMO systems with constrained input via intercepted adaptation and single learning parameter approach’, Nonlinear Dyn., 2015, 82, (3), pp. 11091126.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0988
Loading

Related content

content/journals/10.1049/iet-cta.2016.0988
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading