access icon free Piezoelectric positioning control with output-based discrete-time terminal sliding mode control

Nanopositioning systems with piezoelectric actuation have found extensively applications in micro-/nanomanipulation domain. This paper reports on the design, realisation and testing of a new output-based discrete-time terminal sliding mode control (DTSMC) scheme, which is applied to achieve precision motion control of a piezoelectric nanopositioning system by overcoming the unmolded non-linearity and disturbance. The controller is easy to implement because it does not require a hysteresis model and a state observer. It is able to deliver a precise tracking without chattering phenomenon. The stability of the control system is proved and the effectiveness of the control scheme is demonstrated through experimental studies. Results show that the non-linear DTSMC robust control is superior to the conventional linear discrete-time sliding-mode control in motion tracking application. The DTSMC enables the generation of a larger bandwidth than the conventional approaches. Moreover, the DTSMC endows the system a well robustness feature in the presence of model uncertainty and external disturbances.

Inspec keywords: uncertain systems; piezoelectric actuators; micropositioning; motion control; discrete time systems; robust control; nanopositioning; variable structure systems; nonlinear control systems

Other keywords: external disturbances; nanopositioning systems; output-based discrete-time terminal sliding mode control; piezoelectric actuation; model uncertainty; nonlinear DTSMC robust control; micro-nanomanipulation domain; piezoelectric positioning control; conventional linear discrete-time sliding-mode control; precision motion control; motion tracking application; stability; robustness feature

Subjects: Discrete control systems; Microactuators; Electric actuators and final control equipment; Stability in control theory; Spatial variables control; Nonlinear control systems; Multivariable control systems

References

    1. 1)
      • 25. Li, H., Wang, J., Shi, P.: ‘Output-feedback based sliding mode control for fuzzy systems with actuator saturation’, IEEE Trans. Fuzzy Syst., 2016, 24, (6), pp. 12821293.
    2. 2)
      • 33. Chalanga, A., Kamal, S., Fridman, L., et al: ‘How to implement super-twisting controller based on sliding mode observer?’. Proc. of 13th IEEE Workshop on Variable Structure Systems, Nantes, France, 2014, pp. 16.
    3. 3)
      • 12. Feng, Y., Yu, X., Man, Z.: ‘Non-singular terminal sliding mode control of rigid manipulators’, Automatica, 2002, 38, (12), pp. 21592167.
    4. 4)
      • 27. Su, W.C., Drakunov, S.V., Ozguner, U.: ‘An O(T2) boundary layer in sliding mode for sampled-data systems’, IEEE Trans. Autom. Control, 2000, 45, (3), pp. 482485.
    5. 5)
      • 32. Xu, Q.: ‘Digital sliding mode prediction control of piezoelectric micro/nanopositioning system’, IEEE Trans. Control Syst. Technol., 2015, 23, (1), pp. 297304.
    6. 6)
      • 6. Esbrook, A., Tan, X., Khalil, H.K.: ‘Control of systems with hysteresis via servocompensation and its application to nanopositioning’, IEEE Trans. Contr. Syst. Technol., 2013, 21, (3), pp. 725738.
    7. 7)
      • 31. Bandyopadhyay, B., Fulwani, D.: ‘High-performance tracking controller for discrete plant using nonlinear sliding surface’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 36283637.
    8. 8)
      • 29. Xu, Q.: ‘Piezoelectric nanopositioning control using second-order discrete-time terminal sliding mode strategy’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 77387748.
    9. 9)
      • 17. Yu, X., Xu, J.X., Hong, Y., et al: ‘Analysis of a class of discrete-time systems with power rule’, Automatica, 2007, 43, (3), pp. 562566.
    10. 10)
      • 4. Leang, K.K., Zou, Q., Devasia, S., et al: ‘Inversion-based compensation for dynamics and hysteresis’, IEEE Control Syst. Mag., 2009, 29, (1), pp. 7082.
    11. 11)
      • 11. Yu, X., Man, Z.: ‘Fast terminal sliding-mode control design for nonlinear dynamical systems’, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 2002, 49, (2), pp. 261264.
    12. 12)
      • 13. Jin, M., Lee, J., Ahn, K.K.: ‘Continuous nonsingular terminal sliding-mode control of shape memory alloy acuators using time delay estimation’, IEEE/ASME Trans. Mechatron., 2015, 20, (2), pp. 899909.
    13. 13)
      • 3. Zhang, Y., Tan, K.K., Huang, S.: ‘Vision-servo system for automated cell injection’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 231238.
    14. 14)
      • 5. Liu, L., Tan, K.K., Teo, C.S., et al: ‘Development of an approach toward comprehensive identification of hysteretic dynamics in piezoelectric actuators’, IEEE Trans. Contr. Syst. Technol., 2013, 21, (5), pp. 18341845.
    15. 15)
      • 24. Dong, J., Salapaka, S.M., Ferreira, P.M.: ‘Robust control of a parallel-kinematic nanopositioner’, J. Dyn. Syst. Meas. Control, 2008, 130, (4), pp. 041007-1041007-15.
    16. 16)
      • 16. Janardhanan, S., Bandyopadhyay, B.: ‘On discretization of continuous-time terminal sliding mode’, IEEE Trans. Autom. Contr., 2006, 51, (9), pp. 15321536.
    17. 17)
      • 18. Abidi, K., Xu, J.X., She, J.H.: ‘A discrete-time terminal sliding-mode control approach applied to a motion control problem’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 36193627.
    18. 18)
      • 30. Syrmos, V.L., Abdallah, C.T., Dorato, P., et al: ‘Static output feedback-a survey’, Automatica, 1997, 33, (2), pp. 125137.
    19. 19)
      • 21. Majidabad, S.S., Shandiz, H.T.: ‘Discrete-time based sliding-mode control of robot manipulators’, Int. J. Intell. Comput. Cybern., 2012, 5, (3), pp. 340358.
    20. 20)
      • 26. Xu, Q.: ‘Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control’, IET Control Theory Appl., 2013, 7, (18), pp. 21532163.
    21. 21)
      • 15. Al-Ghanimi, A., Zheng, J., Man, Z.: ‘Robust and fast non-singular terminal sliding mode control for piezoelectric actuators’, IET Control Theory Appl., 2015, 9, (18), pp. 26782687.
    22. 22)
      • 19. Galias, Z., Yu, X.: ‘Dynamical behaviors of discretized second-order terminal sliding-mode control systems’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2012, 59, (9), pp. 597601.
    23. 23)
      • 7. Gu, G.Y., Zhu, L.M., Su, C.Y.: ‘Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 15831595.
    24. 24)
      • 2. Park, J.H., Lee, H.S., Lee, J.H., et al: ‘Design of a piezoelectric-driven tilt mirror for a fast laser scanner’, Jpn J. Appl. Phys., 2012, 52, (9S2), p. 09MD14.
    25. 25)
      • 23. Munje, R.K., Patre, B.M., Tiwari, A.P.: ‘Discrete-time sliding mode spatial control of advanced heavy water reactor’, IEEE Trans. Contr. Syst. Technol., 2016, 24, (1), pp. 357364.
    26. 26)
      • 10. Man, Z., Yu, X.H.: ‘Terminal sliding mode control of MIMO linear systems’, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 1997, 44, (11), pp. 10651070.
    27. 27)
      • 22. Xu, Q.: ‘Digital sliding-mode control of piezoelectric micropositioning system based on input-output model’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 55175526.
    28. 28)
      • 20. Li, S., Du, H., Yu, X.: ‘Discrete-time terminal sliding mode control systems based on Euler's discretization’, IEEE Trans. Autom. Contr., 2014, 59, (2), pp. 546552.
    29. 29)
      • 8. Young, K.D., Utkin, V.I., Ozguner, U.: ‘A control engineer's guide to sliding mode control’, IEEE Trans. Contr. Syst. Technol., 1999, 7, (3), pp. 328342.
    30. 30)
      • 28. Xu, J.X., Abidi, K.: ‘Discrete-time output integral sliding-mode control for a piezomotor-driven linear motion stage’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 39173926.
    31. 31)
      • 14. Li, J., Yang, L.: ‘Finite-time terminal sliding mode tracking control for piezoelectric actuators’, Abstr. Appl. Anal., 2014, 2014, Article ID 760937, doi: 10.1155/2014/760937.
    32. 32)
      • 1. Yong, Y.K., Aphale, S., Moheimani, S.O.R.: ‘Design, identification and control of a flexure-based XY stage for fast nanoscale positioning’, IEEE Trans. Nanotechnol., 2009, 8, (1), pp. 4654.
    33. 33)
      • 9. Hu, J., Wang, Z., Gao, H., et al: ‘Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 30083015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0956
Loading

Related content

content/journals/10.1049/iet-cta.2016.0956
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading