http://iet.metastore.ingenta.com
1887

Piezoelectric positioning control with output-based discrete-time terminal sliding mode control

Piezoelectric positioning control with output-based discrete-time terminal sliding mode control

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nanopositioning systems with piezoelectric actuation have found extensively applications in micro-/nanomanipulation domain. This paper reports on the design, realisation and testing of a new output-based discrete-time terminal sliding mode control (DTSMC) scheme, which is applied to achieve precision motion control of a piezoelectric nanopositioning system by overcoming the unmolded non-linearity and disturbance. The controller is easy to implement because it does not require a hysteresis model and a state observer. It is able to deliver a precise tracking without chattering phenomenon. The stability of the control system is proved and the effectiveness of the control scheme is demonstrated through experimental studies. Results show that the non-linear DTSMC robust control is superior to the conventional linear discrete-time sliding-mode control in motion tracking application. The DTSMC enables the generation of a larger bandwidth than the conventional approaches. Moreover, the DTSMC endows the system a well robustness feature in the presence of model uncertainty and external disturbances.

References

    1. 1)
      • 1. Yong, Y.K., Aphale, S., Moheimani, S.O.R.: ‘Design, identification and control of a flexure-based XY stage for fast nanoscale positioning’, IEEE Trans. Nanotechnol., 2009, 8, (1), pp. 4654.
    2. 2)
      • 2. Park, J.H., Lee, H.S., Lee, J.H., et al: ‘Design of a piezoelectric-driven tilt mirror for a fast laser scanner’, Jpn J. Appl. Phys., 2012, 52, (9S2), p. 09MD14.
    3. 3)
      • 3. Zhang, Y., Tan, K.K., Huang, S.: ‘Vision-servo system for automated cell injection’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 231238.
    4. 4)
      • 4. Leang, K.K., Zou, Q., Devasia, S., et al: ‘Inversion-based compensation for dynamics and hysteresis’, IEEE Control Syst. Mag., 2009, 29, (1), pp. 7082.
    5. 5)
      • 5. Liu, L., Tan, K.K., Teo, C.S., et al: ‘Development of an approach toward comprehensive identification of hysteretic dynamics in piezoelectric actuators’, IEEE Trans. Contr. Syst. Technol., 2013, 21, (5), pp. 18341845.
    6. 6)
      • 6. Esbrook, A., Tan, X., Khalil, H.K.: ‘Control of systems with hysteresis via servocompensation and its application to nanopositioning’, IEEE Trans. Contr. Syst. Technol., 2013, 21, (3), pp. 725738.
    7. 7)
      • 7. Gu, G.Y., Zhu, L.M., Su, C.Y.: ‘Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 15831595.
    8. 8)
      • 8. Young, K.D., Utkin, V.I., Ozguner, U.: ‘A control engineer's guide to sliding mode control’, IEEE Trans. Contr. Syst. Technol., 1999, 7, (3), pp. 328342.
    9. 9)
      • 9. Hu, J., Wang, Z., Gao, H., et al: ‘Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 30083015.
    10. 10)
      • 10. Man, Z., Yu, X.H.: ‘Terminal sliding mode control of MIMO linear systems’, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 1997, 44, (11), pp. 10651070.
    11. 11)
      • 11. Yu, X., Man, Z.: ‘Fast terminal sliding-mode control design for nonlinear dynamical systems’, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 2002, 49, (2), pp. 261264.
    12. 12)
      • 12. Feng, Y., Yu, X., Man, Z.: ‘Non-singular terminal sliding mode control of rigid manipulators’, Automatica, 2002, 38, (12), pp. 21592167.
    13. 13)
      • 13. Jin, M., Lee, J., Ahn, K.K.: ‘Continuous nonsingular terminal sliding-mode control of shape memory alloy acuators using time delay estimation’, IEEE/ASME Trans. Mechatron., 2015, 20, (2), pp. 899909.
    14. 14)
      • 14. Li, J., Yang, L.: ‘Finite-time terminal sliding mode tracking control for piezoelectric actuators’, Abstr. Appl. Anal., 2014, 2014, Article ID 760937, doi: 10.1155/2014/760937.
    15. 15)
      • 15. Al-Ghanimi, A., Zheng, J., Man, Z.: ‘Robust and fast non-singular terminal sliding mode control for piezoelectric actuators’, IET Control Theory Appl., 2015, 9, (18), pp. 26782687.
    16. 16)
      • 16. Janardhanan, S., Bandyopadhyay, B.: ‘On discretization of continuous-time terminal sliding mode’, IEEE Trans. Autom. Contr., 2006, 51, (9), pp. 15321536.
    17. 17)
      • 17. Yu, X., Xu, J.X., Hong, Y., et al: ‘Analysis of a class of discrete-time systems with power rule’, Automatica, 2007, 43, (3), pp. 562566.
    18. 18)
      • 18. Abidi, K., Xu, J.X., She, J.H.: ‘A discrete-time terminal sliding-mode control approach applied to a motion control problem’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 36193627.
    19. 19)
      • 19. Galias, Z., Yu, X.: ‘Dynamical behaviors of discretized second-order terminal sliding-mode control systems’, IEEE Trans. Circuits Syst. II Exp. Briefs, 2012, 59, (9), pp. 597601.
    20. 20)
      • 20. Li, S., Du, H., Yu, X.: ‘Discrete-time terminal sliding mode control systems based on Euler's discretization’, IEEE Trans. Autom. Contr., 2014, 59, (2), pp. 546552.
    21. 21)
      • 21. Majidabad, S.S., Shandiz, H.T.: ‘Discrete-time based sliding-mode control of robot manipulators’, Int. J. Intell. Comput. Cybern., 2012, 5, (3), pp. 340358.
    22. 22)
      • 22. Xu, Q.: ‘Digital sliding-mode control of piezoelectric micropositioning system based on input-output model’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 55175526.
    23. 23)
      • 23. Munje, R.K., Patre, B.M., Tiwari, A.P.: ‘Discrete-time sliding mode spatial control of advanced heavy water reactor’, IEEE Trans. Contr. Syst. Technol., 2016, 24, (1), pp. 357364.
    24. 24)
      • 24. Dong, J., Salapaka, S.M., Ferreira, P.M.: ‘Robust control of a parallel-kinematic nanopositioner’, J. Dyn. Syst. Meas. Control, 2008, 130, (4), pp. 041007-1041007-15.
    25. 25)
      • 25. Li, H., Wang, J., Shi, P.: ‘Output-feedback based sliding mode control for fuzzy systems with actuator saturation’, IEEE Trans. Fuzzy Syst., 2016, 24, (6), pp. 12821293.
    26. 26)
      • 26. Xu, Q.: ‘Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control’, IET Control Theory Appl., 2013, 7, (18), pp. 21532163.
    27. 27)
      • 27. Su, W.C., Drakunov, S.V., Ozguner, U.: ‘An O(T2) boundary layer in sliding mode for sampled-data systems’, IEEE Trans. Autom. Control, 2000, 45, (3), pp. 482485.
    28. 28)
      • 28. Xu, J.X., Abidi, K.: ‘Discrete-time output integral sliding-mode control for a piezomotor-driven linear motion stage’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 39173926.
    29. 29)
      • 29. Xu, Q.: ‘Piezoelectric nanopositioning control using second-order discrete-time terminal sliding mode strategy’, IEEE Trans. Ind. Electron., 2015, 62, (12), pp. 77387748.
    30. 30)
      • 30. Syrmos, V.L., Abdallah, C.T., Dorato, P., et al: ‘Static output feedback-a survey’, Automatica, 1997, 33, (2), pp. 125137.
    31. 31)
      • 31. Bandyopadhyay, B., Fulwani, D.: ‘High-performance tracking controller for discrete plant using nonlinear sliding surface’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 36283637.
    32. 32)
      • 32. Xu, Q.: ‘Digital sliding mode prediction control of piezoelectric micro/nanopositioning system’, IEEE Trans. Control Syst. Technol., 2015, 23, (1), pp. 297304.
    33. 33)
      • 33. Chalanga, A., Kamal, S., Fridman, L., et al: ‘How to implement super-twisting controller based on sliding mode observer?’. Proc. of 13th IEEE Workshop on Variable Structure Systems, Nantes, France, 2014, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0956
Loading

Related content

content/journals/10.1049/iet-cta.2016.0956
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address