http://iet.metastore.ingenta.com
1887

Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation

Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The problem of adaptive practical finite-time control is considered for a class of single-input and single-output non-linear systems, in which the system non-linear functions are assumed to be unknown. By combining adaptive fuzzy control approach with the backstepping technology, a backstepping-based adaptive fuzzy finite-time control scheme is proposed. In the control design procedure, fuzzy logic systems are employed to identify the non-linear uncertainties. The stability analysis of the adaptive closed-loop systems is proposed based on the finite-time Lyapunov stability theory. The proposed adaptive fuzzy controller guarantees that all the closed signals are semi-global practical finite-time stability while the tracking error converges to a small neighbourhood of the origin. Finally, simulation results are presented to validate the effectiveness of our results.

References

    1. 1)
      • 1. Kanelakopoulos, I., Kokotovic, P.V., Morse, A.S.: ‘Systematic design of adaptive controller for feedback linearizable systems’, IEEE Trans. Autom. Control, 1991, 36, (11), pp. 12411253.
    2. 2)
      • 2. Kstić, M., Kanelakopoulos, I., Kokotovic, P.V.: ‘Nonlinear and adaptive control design’ (John Wiley and Sons, New York, 1995).
    3. 3)
      • 3. Chen, B., Zhang, H., Lin, C.: ‘Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 27, (1), pp. 8998.
    4. 4)
      • 4. Long, L., Zhao, J.: ‘Adaptive fuzzy output-feedback control for switched uncertain non-linear systems’, IET Control Theory Appl., 2016, 10, (7), pp. 752761.
    5. 5)
      • 5. Wang, F., Liu, Z., Lai, G., et al: ‘Fuzzy adaptive control of nonlinear uncertain plants with unknown dead zone output’, Fuzzy Sets Syst., 2015, 263, pp. 2748.
    6. 6)
      • 6. Yu, J., Ma, Y., Yu, H., et al: ‘Reduced-order observer-based adaptive fuzzy tracking control for chaotic permanent magnet synchronous motors’, Neurocomputing, 2016, 214, pp. 201209.
    7. 7)
      • 7. Wang, Y., Cao, L., Zhang, S., et al: ‘Command filtered adaptive fuzzy backstepping control method of uncertain non-linear systems’, IET Control Theory Appl., 2016, 10, (10), pp. 11341141.
    8. 8)
      • 8. Chen, B., Lin, C., Liu, X., et al: ‘Observer-based adaptive fuzzy control for a class of nonlinear delayed systems’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (1), pp. 2736.
    9. 9)
      • 9. Wang, H., Liu, X., Liu, P., et al: ‘Robust adaptive fuzzy fault-tolerant control for a class of non-lower-triangular nonlinear systems with actuator failures’, Inf. Sci., 2016, 336, pp. 6074.
    10. 10)
      • 10. Wang, H., Liu, X., Liu, K.: ‘Adaptive fuzzy tracking control for a class of pure-feedback stochastic nonlinear systems with non-lower triangular structure’, Fuzzy Sets Syst., 2015, 302, pp. 101120.
    11. 11)
      • 11. Zhao, D., Zou, T., Li, S., et al: ‘Adaptive backstepping sliding mode control for leader-follower multi-agent systems’, IET Control Theory Appl., 2012, 6, (8), pp. 11091117.
    12. 12)
      • 12. Liu, Z., Wang, F., Zhang, Y., et al: ‘Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems’, IEEE Trans. Cybern., 2015, 46, (2), pp. 524534.
    13. 13)
      • 13. Xiong, W., Ho, D.W.C., Cao, J., et al: ‘Backstepping approach to a class of hierarchical multi-agent systems with communication disturbance’, IET Control Theory Appl., 2016, 10, (9), pp. 981988.
    14. 14)
      • 14. Sun, Y., Chen, B., Lin, C., et al: ‘Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach’, Inf. Sci., 2016, 369, pp. 748764.
    15. 15)
      • 15. Wang, N., Meng, J.E.: ‘Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties’, IEEE Trans. Control Syst. Technol., 2016, 24, (5), pp. 18451852.
    16. 16)
      • 16. Yu, J., Ma, Y., Yu, H., et al: ‘Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping’, Inf. Sci., 2016, 276, (3), pp. 172189.
    17. 17)
      • 17. Athans, M., Falb, P.L.Optimal control: an introduction to theory and its applications’ (McGraw Hill, New York, 1966).
    18. 18)
      • 18. Ryan, E.P.: ‘Singular optimal controls for second-order saturating systems’, Int. J. Control, 1979, 30, (4), pp. 549564.
    19. 19)
      • 19. Feng, Y., Yu, X., Man, Z.: ‘Non-singular terminal sliding mode control of rigid manipulators’, Automatica, 2002, 38, (12), pp. 21592167.
    20. 20)
      • 20. Rang, E.: ‘Isochrone families for second-order systems’, IEEE Trans. Autom. Control, 1963, 8, (1), pp. 6465.
    21. 21)
      • 21. Salehi, S.V., Ryan, E.P.: ‘On optimal nonlinear feedback regulation of linear plants’, IEEE Trans. Autom. Control, 1982, 27, (27), pp. 12601264.
    22. 22)
      • 22. Hong, Y., Huang, J., Xu, Y.: ‘On an output finite-time stabilization problem’, IEEE Trans. Autom. Control, 2001, 46, (2), pp. 305309.
    23. 23)
      • 23. Wang, Z., Li, S., Fei, S.: ‘Finite-time tracking control of a nonholonoic mobile robot’, Asian J. Control, 2009, 11, (3), pp. 344357.
    24. 24)
      • 24. Bhatand, S.P., Bernstein, D.S.: ‘Finite-time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, (3), pp. 751766.
    25. 25)
      • 25. Yu, S., Long, X.: ‘Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode’, Automatica, 2015, 54, pp. 158165.
    26. 26)
      • 26. Song, Z., Sun, K.: ‘Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system’, ISA Trans., 2014, 53, pp. 125133.
    27. 27)
      • 27. Wang, N., Lv, S., Liu, Zh.: ‘Global finite-time heading control of surface vehicles’, Neurocomputing, 2016, 175, pp. 662666.
    28. 28)
      • 28. Bhat, S.P., Bernstein, D.S.: ‘Geometric homogeneity with applications to finite-time stability’, Math. Control Signals Syst., 2005, 17, (2), pp. 101127.
    29. 29)
      • 29. Hong, Y.: ‘Finite-time stabilization and stabilizability of a class of controllable systems’, Syst. Control Lett., 2002, 46, (4), pp. 231236.
    30. 30)
      • 30. Qian, C., Lin, W.: ‘A continuous feedback approach to global strong stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2001, 46, (7), pp. 10611079.
    31. 31)
      • 31. Moulay, E., Dambrine, M., Yeganefar, N., et al: ‘Finite-time stability and stabilization of time-delay systems’, Syst. Control Lett., 2008, 57, (7), pp. 561566.
    32. 32)
      • 32. Wang, X., Zong, G., Sun, H.: ‘Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances’, IET Control Theory Appl., 2016, 10, (10), pp. 11421150.
    33. 33)
      • 33. Binazadeh, T., Shafiei, M.H.: ‘A novel approach in the finite-time controller design’, Syst. Sci. Control Eng., 2014, 2, (1), pp. 119124.
    34. 34)
      • 34. Zhu, Z., Xia, Y., Fu, M.: ‘Attitude stabilization of rigid spacecraft with finite-time convergence’, Int. J. Robust Nonlinear Control, 2011, 21, (6), pp. 686702.
    35. 35)
      • 35. Wang, N., Qian, C., Sun, J., et al: ‘Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles’, IEEE Trans. Control Syst. Technol., 2016, 24, (4), pp. 14541462.
    36. 36)
      • 36. Huang, X., Lin, W., Yang, B.: ‘Global finite-time stabilization of a class of uncertain nonlinear systems’, Automatica, 2005, 41, (5), pp. 881888.
    37. 37)
      • 37. Liu, H., Wang, X., Zhang, T.: ‘Robust finite-time stability control of a class of high-order uncertain nonlinear systems’, Asian J. Control, 2015, 13, (3), pp. 10811087.
    38. 38)
      • 38. Wu, J., Chen, W., Li, J.: ‘Global finite-time adaptive stabilization for nonlinear systems with multiple unknown control directions’, Automatica, 2016, 69, pp. 298307.
    39. 39)
      • 39. Zhang, X., Feng, G., Sun, Y.: ‘Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems’, Automatica, 2012, 48, pp. 499504.
    40. 40)
      • 40. Golestani, M., Mobayen, S., Tchier, F.: ‘Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties’, IET Control Theory Appl., 2016, 10, (14).
    41. 41)
      • 41. Hong, Y., Jiang, Z.P.: ‘Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties’, IEEE Trans. Autom. Control, 2007, 15, (12), pp. 19501956.
    42. 42)
      • 42. Jiang, Z.P., Marcels, I.: ‘Robust nonlinear integral control’, IEEE Trans. Autom. Control, 2001, 46, (8), pp. 13361342.
    43. 43)
      • 43. Gao, F., Yuan, F.: ‘Adaptive finite-time stabilization for a class of uncertain high order nonholonomic systems’, ISA Trans., 2014, 54, pp. 7582.
    44. 44)
      • 44. Huang, J., Wen, C., Wang, W., et al: ‘Design of adaptive finite-time controllers for nonlinear uncertain systems based on given transient specifications’, Automatica, 2016, 69, pp. 395404.
    45. 45)
      • 45. Cai, M., Xiang, Z.: ‘Adaptive neural finite-time control for a class of switched nonlinear systems’, Neurocomputing, 2015, 155, pp. 177185.
    46. 46)
      • 46. Yang, Y., Hua, C., Guan, X.: ‘Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system’, IEEE Trans. Fuzzy Syst., 2014, 22, (3), pp. 631641.
    47. 47)
      • 47. Yu, S., Yu, X., Shirinzadeh, B., et al: ‘Continuous finite-time control for robotic manipulators with terminal sliding mode’, Automatica, 2005, 41, (11), pp. 19571964.
    48. 48)
      • 48. Qian, C., Wei, L.: ‘Non-lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization’, Syst. Control Lett., 2001, 42, (3), pp. 185200.
    49. 49)
      • 49. Wang, L.X., Mendel, J.M.: ‘Fuzzy basis functions, universal approximation, and orthogonal least squares learning’, IEEE Trans. Neural Netw., 1992, 3, (5), pp. 807814.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0947
Loading

Related content

content/journals/10.1049/iet-cta.2016.0947
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address