http://iet.metastore.ingenta.com
1887

Identification of dual-rate sampled systems with time delay subject to load disturbance

Identification of dual-rate sampled systems with time delay subject to load disturbance

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A discrete-time model identification method is proposed for dual-rate sampled systems with time delay subject to load disturbance with unknown dynamics. By viewing the output response arising from such load disturbance as a dynamic parameter for estimation, two recursive least-squares identification algorithms are developed to estimate the linear model parameters and the load disturbance response, respectively, while the integer delay parameter is derived by using a one-dimensional searching approach to minimise the output fitting error. An auxiliary model is constructed to estimate the unknown noise-free output such that consistent estimation of the model parameters can be obtained under stochastic noise in the output measurement. Moreover, two adaptive forgetting factors are introduced to expedite the convergence rates of estimating the model parameters and the load disturbance response, respectively. Theoretical analysis is given to clarify the convergence of parameter estimation. Two illustrative examples are presented to demonstrate the effectiveness and merit of the proposed identification method.

References

    1. 1)
      • 1. Üstüntürk, A.: ‘Output feedback stabilization of nonlinear dual-rate sampled-data systems via an approximate discrete-time model’, Automatica, 2012, 48, (8), pp. 17961802.
    2. 2)
      • 2. Sun, X.F., Zhang, H.Y., Fan, Y.Z.: ‘Recursive dual-linear-programming approach for parameter-uncertainty-interval estimation’, IEE Proc. Control Theory Applic., 2003, 150, (3), pp. 303310.
    3. 3)
      • 3. Liu, X., Marquez, H., Lin, Y.: ‘Input-to-state stabilization for nonlinear dual-rate sampled-data systems via approximate discrete-time model’, Automatica, 2008, 44, (12), pp. 31573161.
    4. 4)
      • 4. Lu, W., Fisher, D.: ‘Least-squares output estimation with multirate sampling’, IEEE Trans. Autom. Control, 1989, 34, (6), pp. 669672.
    5. 5)
      • 5. Li, D., Shah, S., Chen, T., et al: ‘Application of dual-rate modeling to CCR octane quality inferential control’, IEEE Trans. Control Syst. Technol., 2003, 11, (1), pp. 4351.
    6. 6)
      • 6. Raghavan, H., Gopaluni, R.B., Shah, S., et al: ‘Gray-box identification of dynamic models for the bleaching operation in a pulp mill’, J. Process Control, 2005, 15, (4), pp. 451468.
    7. 7)
      • 7. Ding, F., Chen, T.: ‘Combined parameter and output estimation of dual-rate systems using an auxiliary model’, Automatica, 2004, 40, (10), pp. 17391748.
    8. 8)
      • 8. Liu, Y., Ding, F., Shi, Y.: ‘An efficient hierarchical identification method for general dual-rate sampled-data systems’, Automatica, 2014, 50, (3), pp. 962970.
    9. 9)
      • 9. Zhu, Y., Telkamp, H., Wang, J., et al: ‘System identification using slow and irregular output samples’, J. Process Control, 2009, 19, (1), pp. 5867.
    10. 10)
      • 10. Mo, S., Chen, X., Zhao, J., et al: ‘A two-stage method for identification of dual-rate systems with fast input and very slow output’, Ind. Eng. Chem. Res., 2009, 48, (4), pp. 19801988.
    11. 11)
      • 11. Garnier, H., Wang, L.: ‘Identification of continuous-time models from sampled data’ (Springer-Verlag, London, 2008).
    12. 12)
      • 12. Liu, T., Gao, F.: ‘Industrial process identification and control design: step-test and relay-experiment-based methods’ (Springer, London, 2012).
    13. 13)
      • 13. Liu, T., Zhou, F., Yang, Y., et al: ‘Step response identification under inherent-type load disturbance with application to injection molding’, Ind. Eng. Chem. Res., 2010, 49, pp. 1157211581.
    14. 14)
      • 14. Söderström, T., Stoica, P.: ‘System identification’ (Prentice Hall, New York, USA, 2001, 2nd edn.).
    15. 15)
      • 15. Liu, T., Wang, Q.G., Huang, H.P.: ‘A tutorial review on process identification from step or relay feedback test’, J. Process Control, 2013, 23, pp. 15971623.
    16. 16)
      • 16. Wang, Q.G., Zhang, Y.: ‘Robust identification of continuous systems with dead-time from step response’, Automatica, 2001, 37, pp. 377390.
    17. 17)
      • 17. Liu, T., Gao, F.: ‘Robust step-like identification of low-order process model under nonzero initial conditions and disturbance’, IEEE Trans. Automatic Control, 2008, 53, pp. 26902695.
    18. 18)
      • 18. Hwang, S.H., Lai, S.T.: ‘Use of two-stage least-squares algorithms for identification of continuous systems with time delay based on pulse responses’, Automatica, 2004, 40, pp. 15611568.
    19. 19)
      • 19. Hwang, S.H., Ling, H.C., Shiu, S.J.: ‘Robust identification of continuous parametric models based on multiple sinusoidal testing under slow or periodic disturbances’, Ind. Eng. Chem. Res., 2004, 43, (19), pp. 61256135.
    20. 20)
      • 20. Wang, Q.G., Liu, M., Hang, C.C., et al: ‘Robust process identification from relay tests in the presence of nonzero initial conditions and disturbance’, Ind. Eng. Chem. Res., 2006, 45, pp. 40634070.
    21. 21)
      • 21. Kaya, I.: ‘Parameter estimation for integrating processes using relay feedback control under static load disturbances’, Ind. Eng. Chem. Res, 2006, 45, (13), pp. 47264731.
    22. 22)
      • 22. Young, P.C.: ‘Recursive estimation and time-series analysis: an introduction for the student and practitioner’ (Springer, London, 2011, 2nd edn.).
    23. 23)
      • 23. Mu, B., Chen, H.: ‘Recursive identification of errors-in-variables Wiener-Hammerstein systems’, Eur. J. Control, 2014, 20, (1), pp. 1423.
    24. 24)
      • 24. Huffel, S., Lemmerling, P.: ‘Total least squares and errors-in-variables modeling: analysis, algorithms and applications’ (Springer, London, 2013).
    25. 25)
      • 25. He, L., Sun, X.: ‘Recursive triangulation description of the feasible parameter set for bounded-noise models’, IET Control Theory Applic., 2010, 4, (6), pp. 985992.
    26. 26)
      • 26. Ding, F., Duan, H.: ‘Two-stage parameter estimation algorithms for Box–Jenkins systems’, IET Signal Process., 2013, 7, (8), pp. 646654.
    27. 27)
      • 27. Chen, F., Garnier, H., Gilson, M.: ‘Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data’, J. Process Control, 2015, 25, pp. 1927.
    28. 28)
      • 28. Moser, M., Onder, C., Guzzella, L.: ‘Recursive parameter estimation of exhaust gas oxygen sensors with input-dependent time delay and linear parameters’, Control Eng. Pract., 2015, 41, pp. 149163.
    29. 29)
      • 29. Evestedt, M., Medvedev, A.: ‘Stationary behavior of an anti-windup scheme for recursive parameter estimation under lack of excitation’, Automatica, 2006, 42, (1), pp. 151157.
    30. 30)
      • 30. Paleologu, C., Benesty, J., Ciochină, S.: ‘A robust variable forgetting factor recursive least-squares algorithm for system identification’, IEEE. Signal Process. Lett., 2008, 15, pp. 597600.
    31. 31)
      • 31. Ding, F., Chen, T.: ‘Performance bounds of forgetting factor least-squares algorithms for time-varying systems with finite measurement data’, IEEE Trans. Circuits Syst., 2005, 52, (3), pp. 555566.
    32. 32)
      • 32. Karra, S., Karim, M.N.: ‘Alternative model structure with simplistic noise model to identify linear time invariant systems subjected to non-stationary disturbances’, J. Process Control, 2009, 19, pp. 964977.
    33. 33)
      • 33. Shi, J., Gao, F., Wu, T.J.: ‘Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system’, J. Process Control, 2005, 15, pp. 907924.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0941
Loading

Related content

content/journals/10.1049/iet-cta.2016.0941
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address