access icon free Robust consensus of autonomous underactuated surface vessels

A distributed robust consensus of multiple autonomous underactuated surface vessels (AUSV) is studied in the presence of unknown environmental disturbances. The vehicles have 3 degrees of freedom and two actuators. Since the actuated and unactuated states of the vehicles are strongly coupled, first their kinematics and dynamics are transformed to a cascade non-linear system. Then, based on the properties of non-linear cascade systems, a state-based switching controller is proposed which guarantees the robust consensus of AUSVs. To illustrate the performance of the proposed consensus approach, simulation results are provided.

Inspec keywords: distributed control; multi-robot systems; robust control; actuators; switching systems (control); nonlinear control systems; remotely operated vehicles; mobile robots; cascade systems; robot kinematics; robot dynamics

Other keywords: 3-degree-of-freedom; distributed robust consensus; multiple AUSV; actuated vehicle state; actuators; multiple autonomous underactuated surface vessels; unactuated vehicle state; vehicle dynamics; unknown environmental disturbances; vehicle kinematics; state-based switching controller; nonlinear cascade systems

Subjects: Time-varying control systems; Mobile robots; Robot and manipulator mechanics; Nonlinear control systems; Telerobotics; Stability in control theory; Actuating and final control devices; Marine system control

References

    1. 1)
      • 31. Bhat, P.S., Bernstein, S.D.: ‘Finite-time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, (3), pp. 751766.
    2. 2)
      • 27. Hutagalung, M., Hayakawa, T., Urakubo, T.: ‘Configuration consensus of two underactuated planar rigid bodies’. Proc. IEEE Conf. on Decision and Control, 2008, pp. 50165021.
    3. 3)
      • 19. Chwa, D.: ‘Nonlinear tracking control of underactuate ships based on a unified kinematic and dynamic model’. Proc. Mediterranean Conf. on Control and Automation, 2007, pp. 16.
    4. 4)
      • 21. Xiang, X., Lapierre, L., Jouvencel, B.: ‘Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration’, Robot. Auton. Syst., 2015, 67, pp. 1422.
    5. 5)
      • 23. Yang, E., Gu, D.: ‘Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles’, IEEE/ASME Trans. Mech., 2007, 12, (2), pp. 164178.
    6. 6)
      • 32. Qian, C., Lin, W.: ‘A continuous feedback approach to global strong stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2001, 46, (7), pp. 10611079.
    7. 7)
      • 4. Jadbabaie, A., Jie, L., Stephan, M.: ‘Coordination of groups of mobile autonomous agents using nearest neighbor rules’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 9881001.
    8. 8)
      • 18. Fossen, I.T., Pettersen, Y.K.: ‘On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws’, Automatica, 2014, 50, (11), pp. 29122917.
    9. 9)
      • 30. Li, S., Dua, H., Lin, X.: ‘Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics’, Automatica, 2011, 47, (8), pp. 17061712.
    10. 10)
      • 10. Cao, K.C., Jiangb, B., Yue, D.: ‘Consensus of multiple nonholonomic chained form systems’, Systems Control Lett., 2014, 72, pp. 6170.
    11. 11)
      • 1. Agogino, A., Tumer, K.: ‘A multi-agent approach to managing air traffic flow’, Auton . Agent. Multi Agent Syst., 2012, 24, (1), pp. 125.
    12. 12)
      • 20. Do, D.K., Jiang, P.Z., Pan, J.: ‘Underactuated ship global tracking under relaxed conditions’, IEEE Trans. Autom. Control, 2002, 47, (9), pp. 15291536.
    13. 13)
      • 17. Ghommam, J., Mnif, F., Derbel, N.: ‘Global stabilisation and tracking control of underactuated surface vessels’, IET Control Theory Appl., 2010, 4, (1), pp. 7188.
    14. 14)
      • 34. Reyhanoglu, M.: ‘Exponential stabilization of an underactuated autonomous surface vessel’, Automatica, 1997, 32, (12), pp. 22492254.
    15. 15)
      • 6. Jiahu, Q., Wei, X.Z., Huijun, G.: ‘Coordination of multiple agents with double-integrator dynamics under generalized interaction topologies’, IEEE Trans. Syst. Man Cybernet. B Cybernet., 2012, 42, (1), pp. 4457.
    16. 16)
      • 2. Khan, M., Chan, B., Khan, A., et al: ‘Optimized dynamic task allocation and priority assignments in an immunized autonomous multi-robot search and rescue operation’, Sci. Technol., 2012, 15, (2), pp. 129145.
    17. 17)
      • 3. Ren, W., Beard, R.: ‘Distributed consensus in multi-vehicle cooperative control’ (Springer, 2008).
    18. 18)
      • 12. Xin, X., Liu, Y.: ‘Control design and analysis for underactuated robotic systems’ (Springer Press, 2014).
    19. 19)
      • 14. Fossen, T.I.: ‘Guidanace and control of ocean vehicles’ (John Wiley & Sons, 1999).
    20. 20)
      • 5. Olfati-Saber, R., Muray, R.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    21. 21)
      • 33. Hardy, H.G., Littlewood, E.J., Polya, G.: ‘Inequalities’ (Cambridge University Press, 1952).
    22. 22)
      • 25. Cui, R., Ge, S.S., How, B.E., et al: ‘Leader-follower formation control of underactuated autonomous underwater vehicles’, Ocean Eng., 2010, 37, (17–18), pp. 14911502.
    23. 23)
      • 29. Khalil, K.H.: ‘Nonlinear systems’ (Prentice Hall Press, 2002).
    24. 24)
      • 24. Shojaei, K.: ‘Leader–follower formation control of underactuated autonomous marine surface vehicles with limited torque’, Ocean Eng., 2015, 105, pp. 196205.
    25. 25)
      • 26. Park, S.B.: ‘Adaptive formation control of underactuated autonomous underwater vehicles’, Ocean Eng., 2015, 96, pp. 17.
    26. 26)
      • 9. Tuna, E.S.: ‘Conditions for synchronizability in arrays of coupled linear systems’, IEEE Trans. Autom. Control, 2009, 54, (10), pp. 24162420.
    27. 27)
      • 7. Jiandong, Z., Yu, P.T., Jing, K.: ‘On the general consensus protocol of multi-agent systems with double-integrator dynamics’, Linear Algebra Appl., 2009, 431, (5–7), pp. 701715.
    28. 28)
      • 13. Olfati-Saber, R.: ‘Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles’. PhD thesis, Massachusetts Institute of Technology, 2001.
    29. 29)
      • 22. Li, S., Wang, X.: ‘Finite-time consensus and collision avoidance control algorithms for multiple AUVs’, Automatica, 2013, 49, (11), pp. 33593367.
    30. 30)
      • 11. Qina, M., Liua, Z., Chen, Z.: ‘Observer-based consensus for nonlinear multi-agent systems with intermittent communication’, Neurocomputing, 2015, 154, pp. 230238.
    31. 31)
      • 28. Hutagalung, M., Hayakawa, T., Urakubo, T.: ‘Consensus control for underactuated vehicles’. Proc. 18th IFAC World Congress, 2011, pp. 67216726.
    32. 32)
      • 16. Brockett, W.R.: ‘Asymptotic stability and feedback stabilization’, in Differential Geometric Control Theory, 1983, pp. 183191.
    33. 33)
      • 15. Do, D.K., Pan, J.: ‘Control of ships and underwater vehicles’ (Springer, 2009).
    34. 34)
      • 8. Zhongkui, L., Zhisheng, D., Guanrong, C., et al: ‘Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint’, IEEE Trans Circuits Syst .I: Reg. Pap., 2010, 57, (1), pp. 213224.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0930
Loading

Related content

content/journals/10.1049/iet-cta.2016.0930
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading