http://iet.metastore.ingenta.com
1887

Observer-based adaptive control of uncertain stochastic singular systems via integral sliding mode technique

Observer-based adaptive control of uncertain stochastic singular systems via integral sliding mode technique

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the problem of adaptive sliding mode control (SMC) for uncertain stochastic singular systems. A novel integral-type sliding surface function is first introduced based on a particular observer design, which incorporates both the state estimations and the outputs to achieve prescribed specifications. The analysis of mean-square asymptotic admissibility of the underlying sliding mode dynamics with disturbance attenuation level for the closed-loop systems is performed to exploit a new condition via linear matrix inequality technique. Then, the reachability of the predesigned sliding surface is ensured within finite-time almost surely by utilising a novel adaptive SMC law. Two examples are provided to demonstrate the validity and potential of the proposed method.

References

    1. 1)
      • 1. Dai, L.: ‘Singular control systems’. (Lecture notes in control and information sciences), (Springer, New York, 1989).
    2. 2)
      • 2. Wu, Z.G., Su, H.Y., Shi, P., et al: ‘Analysis and synthesis of singular systems with time-delays’ (Springer, Berlin, 2013).
    3. 3)
      • 3. Li, J., Zhang, Y., Pan, Y.: ‘Mean-square exponential stability and stabilisation of stochastic singular systems with multiple time-varying delays’, Circuits Systems Signal Process., 2015, 34, pp. 11871210.
    4. 4)
      • 4. Xu, S., Lam, J.: ‘Robust control and filtering of singular systems’ (Springer, Berlin, 2006).
    5. 5)
      • 5. Ma, S., Boukas, E.K.: ‘Robust H filtering for uncertain discrete Markov jump singular systems with mode-dependent time delay’, IET Control Theory Appl., 2009, 3, pp. 351361.
    6. 6)
      • 6. Liu, Z., Gao, C.C.: ‘A new result on robust H control for uncertain time-delay singular systems via sliding mode control’, Complexity, 2016, 21, pp. 165177.
    7. 7)
      • 7. Alma, M., Darouach, M.: ‘Adaptive observers design for a class of linear descriptor systems’, Automatica, 2014, 50, pp. 578583.
    8. 8)
      • 8. Mao, X.: ‘Stochastic differential equations and their applications’ (Horwood Pub, Chichester, 2007, 2nd edn.).
    9. 9)
      • 9. Liang, J., Liu, X.: ‘Robust stabilisation for a class of stochastic two-dimensional non-linear systems with time-varying delays’, IET Control Theory Appl., 2013, 7, pp. 16991710.
    10. 10)
      • 10. Li, J., Bao, W., Li, S., et al: ‘Exponential synchronization of discrete-time mixed delay neural networks with actuator constraints and stochastic missing data’, Neurocomputing, 2016, 207, pp. 700707.
    11. 11)
      • 11. Li, J., Pan, Y., Su, H., et al: ‘Stochastic reliable control of a class of networked control systems with actuator faults and input saturation’, Int. J. Control Autom. Syst., 2014, 12, pp. 564571.
    12. 12)
      • 12. Zhang, W., Chen, B.: ‘On stabilizability and exact observability of stochastic systems with their applications’, Automatica, 2004, 40, pp. 8794.
    13. 13)
      • 13. Zhao, L., Jia, Y.: ‘Finite-time attitude stabilisation for a class of stochastic spacecraft systems’, IET Control Theory Appl., 2015, 9, pp. 13201327.
    14. 14)
      • 14. Li, J., Li, L.: ‘Mean-square exponential stability for stochastic discrete-time recurrent neural networks with mixed time delays’, Neurocomputing, 2015, 151, pp. 790797.
    15. 15)
      • 15. Boukas, E.K.: ‘Stabilization of stochastic singular nonlinear hybrid systems’, Nonlinear Anal. Theory Methods Appl., 2006, 64, pp. 217228.
    16. 16)
      • 16. Huang, L., Mao, X.: ‘Stability of singular stochastic systems with Markovian switching’, IEEE Trans. Autom. Control, 2011, 56, pp. 424429.
    17. 17)
      • 17. Raouf, J., Boukas, E.: ‘Robust stabilization of Markovian jump linear singular systems with Wiener process’. Proc. American Control Conf., 2004, pp. 31703175.
    18. 18)
      • 18. Zhang, W., Zhao, Y., Sheng, L.: ‘Some remarks on stability of stochastic singular systems with state-dependent noise’, Automatica, 2015, 51, pp. 273277.
    19. 19)
      • 19. Kumaresan, N., Balasubramaniam, P.: ‘Optimal control for stochastic linear quadratic singular system using neural networks’, J. Process Control, 2009, 19, pp. 482488.
    20. 20)
      • 20. Wang, F., Liang, J., Wang, F.: ‘Optimal control for discrete-time singular stochastic systems with input delay’, Opt. Control Appl. Methods, 2016, 37, pp. 12821313.
    21. 21)
      • 21. Wang, G., Zhang, Q.: ‘Robust control of uncertain singular stochastic systems with Markovian switching via proportional-derivative state feedback’, IET Control Theory Appl., 2012, 6, pp. 10891096.
    22. 22)
      • 22. Barbata, A., Zasadzinski, M., Ali, H., et al: ‘Observer design for a class of singular stochastic nonlinear systems’. Proc. European Control Conf., 2014, pp. 294299.
    23. 23)
      • 23. Gao, Z., Shi, X.: ‘Observer-based controller design for stochastic descriptor systems with Brownian motions’, Automatica, 2013, 49, pp. 22292235.
    24. 24)
      • 24. Hung, J., Gao, W., Hung, J.: ‘Variable structure control: a survey’, IEEE Trans. Ind. Electron., 1993, 40, pp. 222.
    25. 25)
      • 25. Edwards, C., Spurgeon, S.: ‘Sliding mode control: theory and applications’ (Taylor and Francis, London, 1998).
    26. 26)
      • 26. Huang, L., Mao, X.: ‘SMC design for robust H control of uncertain stochastic delay systems’, Automatica, 2010, 46, pp. 405412.
    27. 27)
      • 27. Karimi, H.: ‘A sliding mode approach to H synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties’, J. Franklin Inst., 2012, 349, pp. 14801496.
    28. 28)
      • 28. Li, J., Su, H., Zhang, Y., et al: ‘Chattering free sliding mode control for uncertain discrete time-delay singular systems’, Asian J. Control, 2013, 15, pp. 260269.
    29. 29)
      • 29. Wu, L., Ho, D.: ‘Sliding mode control of singular stochastic hybrid systems’, Automatica, 2010, 46, pp. 779783.
    30. 30)
      • 30. Zhao, L., Jia, Y.: ‘Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques’, Int. J. Control, 2015, 88, pp. 11501162.
    31. 31)
      • 31. Spurgeon, S.: ‘Sliding mode observers: a survey’, Int. J. Syst. Sci., 2008, 39, pp. 751764.
    32. 32)
      • 32. Wu, L., Shi, P., Gao, H.: ‘State estimation and sliding-mode control of Markovian jump singular systems’, IEEE Trans. Autom.Control, 2010, 55, pp. 12131219.
    33. 33)
      • 33. Kao, Y., Xie, J., Wang, C., et al: ‘Observer-based H sliding mode controller design for uncertain stochastic singular time-delay systems’, Circuits Syst. Signal Process., 2016, 35, pp. 6377.
    34. 34)
      • 34. Li, J., Zhang, Q.: ‘An integral sliding mode control approach to observer-based stabilization of stochastic Itô descriptor systems’, Neurocomputing, 2016, 173, pp. 13301340.
    35. 35)
      • 35. Li, H., Shi, P., Yao, D., et al: ‘Observer-based adaptive sliding mode control for nonlinear Markovian jump systems’, Automatica, 2016, 64, pp. 133142.
    36. 36)
      • 36. Park, J.: ‘Design of robust H filter for a class of neutral systems: LMI optimization approach’, Math. Comput. Simul., 2005, 70, pp. 99109.
    37. 37)
      • 37. Kao, Y., Xie, J., Wang, C., et al: ‘A sliding mode approach to H non-fragile observer-based control design for uncertain Markovian neutral-type stochastic systems’, Automatica, 2015, 52, pp. 218226.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0911
Loading

Related content

content/journals/10.1049/iet-cta.2016.0911
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address