http://iet.metastore.ingenta.com
1887

sampled-data fuzzy control for non-linear parabolic distributed parameter systems with control inputs missing

sampled-data fuzzy control for non-linear parabolic distributed parameter systems with control inputs missing

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an sampled-data fuzzy control problem is considered for non-linear parabolic partial differential equation (PPDE) systems with control inputs missing. It is assumed that the actuator to the plant is set to zero if the control inputs missing which occurs in a random way satisfies a Bernoulli distribution. With the aid of the modal decomposition technique, a non-linear ordinary differential equation (ODE) system is initially obtained to represent the dominant dynamics of the PPDE system. Subsequently, a Takagi–Sugeno fuzzy model is utilised to accurately describe the resulting non-linear ODE system. Then, using a novel time-dependent functional and the stochastic analysis technique, an sampled-data fuzzy controller with the stochastic missing data via linear matrix inequalities is proposed to stabilise exponentially the non-linear PPDE system in the mean square sense and achieve an performance for the derived non-linear ODE system. Finally, an example on a temperature cooling fin is given to verify the proposed design strategy.

References

    1. 1)
      • 1. Ray, W.H.: ‘Advanced process control’ (McGraw-Hill, New York, 1981).
    2. 2)
      • 2. Curtain, R.: ‘Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input’, IEEE Trans. Autom. Control, 1982, 27, pp. 98104.
    3. 3)
      • 3. Christofides, P.D., Daoutidis, P.: ‘Nonlinear control of diffusion-convection-reaction processes’, Comput. Chem. Eng., 1996, 20, pp. 10711076.
    4. 4)
      • 4. Christofides, P.D., Baker, J.: ‘Robust output feedback control of quasi-linear parabolic PDE systems’, Syst. Control Lett., 1999, 36, pp. 307316.
    5. 5)
      • 5. Armaou, A., Christofides, P.D.: ‘Robust control of parabolic PDE systems with time-dependent spatial domains’, Automatica, 2001, 37, pp. 6169.
    6. 6)
      • 6. Christofides, P.D.: ‘Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes’ (Birkhäser, Boston, MA, 2001).
    7. 7)
      • 7. El-Farra, N.H., Armaou, A., Christofides, P.D.: ‘Analysis and control of parabolic PDE systems with input constraints’, Automatica, 2003, 39, pp. 715725.
    8. 8)
      • 8. Li, H.-X., Deng, H., Zhong, J.: ‘Model-based integration of control and supervision for one kind of curing process’, IEEE Trans. Electron. Packag. Manuf., 2004, 27, pp. 177186.
    9. 9)
      • 9. Dubljevic, S., Christofides, P.D.: ‘Predictive control of parabolic PDEs with boundary control actuation’, Comput. Chem. Eng., 2006, 61, pp. 62396248.
    10. 10)
      • 10. Li, M., Christofides, P.D.: ‘Optimal control of diffusion-convection-reaction processes using reduced-order models’, Comput. Chem. Eng., 2008, 32, pp. 21232135.
    11. 11)
      • 11. Pitchaiah, S., Armaou, A.: ‘Output feedback control of dissipative PDE systems with partial sensor information based on adaptive model reduction’, AIChE J., 2013, 59, pp. 747760.
    12. 12)
      • 12. Rakkiyappan, R., Zhu, Q., Radhika, T.: ‘Design of sampled data state estimator for Markovian jumping neural networks with leakage time-varying delays and discontinuous Lyapunov functional approach’, Nonlinear Dyn., 2013, 73, pp. 13671383.
    13. 13)
      • 13. Rakkiyappan, R., Zhu, Q.: ‘Comments on ‘Design of sampled data state estimator for Markovian jumping neural networks with leakage time-varying delays and discontinuous Lyapunov functional approach’’, Nonlinear Dyn., 2014, 77, pp. 10691076.
    14. 14)
      • 14. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: ‘Exponential stability of impulsive systems with application to uncertain sampled-data systems’, Syst. Control Lett., 2008, 57, pp. 378385.
    15. 15)
      • 15. Chen, W.-H., Zheng, W.-X.: ‘Input-to-state stability for networked control systems via an improved impulsive system approach’, Automatica, 2011, 47, pp. 789796.
    16. 16)
      • 16. Fujioka, H.: ‘A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices’, IEEE Trans. Autom. Control, 2009, 54, pp. 24402445.
    17. 17)
      • 17. Suh, Y.S.: ‘Stability and stabilization of nonuniform sampling systems’, Automatica, 2008, 44, pp. 32223226.
    18. 18)
      • 18. Oishi, Y., Fujioka, H.: ‘Stability and stabilization of aperiodic sampled-data control systems using robust linear matrix inequalities’, Automatica, 2010, 46, pp. 13271333.
    19. 19)
      • 19. Fridman, E., Seuret, A., Richard, J.-P.: ‘Robust sampled-data stabilization of linear systems: an input delay approach’, Automatica, 2004, 40, pp. 14411446.
    20. 20)
      • 20. Fridman, E., Shaked, U.: ‘Input-output approach to stability and L2-gain analysis of systems with time-varying delays’, Syst. Control Lett., 2006, 55, pp. 10411053.
    21. 21)
      • 21. Mirkin, L.: ‘Some remarks on the use of time-varying delay to model sample-and-hold circuits’, IEEE Trans. Autom. Control, 2007, 52, pp. 11091112.
    22. 22)
      • 22. Wang, Z., Ho, D.W.C., Liu, X.: ‘Variance-constrained filtering for uncertain stochastic systems with missing measurements’, IEEE Trans. Autom. Control, 2003, 48, pp. 12541258.
    23. 23)
      • 23. Gao, H., Wu, J., Shi, P.: ‘Robust sampled-data H control with stochastic sampling’, Automatica, 2009, 45, pp. 17291736.
    24. 24)
      • 24. Rakkiyappan, R., Dharani, S., Zhu, Q.: ‘Stochastic sampled-data H synchronization of coupled neutral-type delay partial differential systems’, J. Franklin Inst., 2015, 352, pp. 44804502.
    25. 25)
      • 25. Tian, E., Yue, D., Peng, C.: ‘Reliable control for networked control systems with probabilistic actuator fault and random delays’, J. Franklin Inst., 2010, 347, pp. 19071926.
    26. 26)
      • 26. Zhang, X., Lu, G., Zheng, Y.: ‘Stabilization of networked stochastic time–delay fuzzy systems with data dropout’, IEEE Trans. Fuzzy Syst., 2008, 16, pp. 798807.
    27. 27)
      • 27. Lee, T.H., Park, J.H., Lee, S.M., et al: ‘Robust sampled-data control with random missing data scenario’, Int. J. Control, 2014, 87, pp. 19571969.
    28. 28)
      • 28. Liu, W., Lim, C.-C., Shi, P., et al: ‘Sampled-data fuzzy control for a class of nonlinear systems with missing data and disturbances’, Fuzzy Sets Syst., 2017, 306, pp. 6386.
    29. 29)
      • 29. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (Wiley, New York, 2001).
    30. 30)
      • 30. Feng, G.: ‘Analysis and synthesis of fuzzy control systems: a model based approach’ (CRC Press, Boca Raton, 2010).
    31. 31)
      • 31. Gao, H., Chen, T.: ‘Stabilization of nonlinear systems under variable sampling: a fuzzy control approach’, IEEE Trans. Fuzzy Syst., 2007, 15, pp. 972983.
    32. 32)
      • 32. Lam, H.K., Seneviratne, L.D.: ‘Chaotic synchronization using sampled-data fuzzy controller based on fuzzy-model-based approach’, IEEE Trans. Circuits Syst. I, 2008, 55, pp. 883892.
    33. 33)
      • 33. Yoneyama, J.: ‘Robust sampled-data stabilization of uncertain fuzzy systems via input delay approach’, Inf. Sci., 2012, 198, pp. 169176.
    34. 34)
      • 34. Zhu, X., Chen, B., Yue, D., et al: ‘An improved input delay approach to stabilization of fuzzy systems under variable sampling’, IEEE Trans. Fuzzy Syst., 2012, 20, pp. 330341.
    35. 35)
      • 35. Wu, Z.-G., Shi, P., Su, H., et al: ‘Sampled-data fuzzy control of chaotic systems based on T–S fuzzy model’, IEEE Trans. Fuzzy Syst., 2014, 22, pp. 153163.
    36. 36)
      • 36. Jiang, X.: ‘On sampled-data fuzzy control design approach for T–S model-based fuzzy systems by using discretization approach’, Inf. Sci., 2015, 296, pp. 307314.
    37. 37)
      • 37. Wang, Z.-P., Wu, H.-N.: ‘On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach’, IEEE Trans. Cybern., 2015, 45, pp. 819829.
    38. 38)
      • 38. Wu, H.-N., Li, H.-X.: ‘Finite-dimensional constrained fuzzy control of a class of nonlinear distributed process systems’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2007, 37, pp. 14221430.
    39. 39)
      • 39. Wu, H.-N., Li, H.-X.: ‘H fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints’, IEEE Trans. Fuzzy Syst., 2008, 16, pp. 502516.
    40. 40)
      • 40. Yuan, K., Li, H.-X., Cao, J.: ‘Robust stabilization of the distributed parameter system with time–delay via fuzzy control’, IEEE Trans. Fuzzy Syst., 2008, 16, pp. 567584.
    41. 41)
      • 41. Chen, B.-S., Chang, Y.-T.: ‘Fuzzy state-space modeling and robust observer-based control design for nonlinear partial differential systems’, IEEE Trans. Fuzzy Syst., 2008, 17, pp. 10251043.
    42. 42)
      • 42. Wu, H.-N., Li, H.-X.: ‘A multi-objective optimization based fuzzy control for nonlinear spatially distributed processes with application to a catalytic rod’, IEEE Trans. Ind. Inf., 2012, 8, pp. 860868.
    43. 43)
      • 43. Chang, Y.-T., Ho, S.-J., Chen, B.-S.: ‘Robust stabilization design of nonlinear stochastic partial differential systems: fuzzy approach’, Fuzzy Sets Syst., 2014, 248, pp. 6185.
    44. 44)
      • 44. Wang, Z.-P., Wu, H.-N.: ‘Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems’, Inf. Sci., 2016, 327, pp. 2139.
    45. 45)
      • 45. Curtain, R.F., Zwart, H.: ‘An introduction to infinite-dimensional linear systems theory’ (Springer-Verlag, New York, 1995).
    46. 46)
      • 46. Pazy, A.: ‘Semigroups of linear operators and applications to partial differential equations’ (Springer-Verlag, New York, 1983).
    47. 47)
      • 47. Haberman, R.: ‘Applied partial differential equations with Fourier series and boundary value problems’ (Prentice-Hall, Englewood Cliffs, NJ, 2004).
    48. 48)
      • 48. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, Upper Saddle River, NJ, 2002).
    49. 49)
      • 49. Wu, H.-N., Li, H.-X.: ‘A Galerkin/neural-network based design of guaranteed cost control for nonlinear distributed parameter systems’, IEEE Trans. Neural Netw., 2008, 19, pp. 795807.
    50. 50)
      • 50. Gahinet, P., Nemirovski, A., Laub, A.J., et al: ‘LMI control toolbox’ (MathWorks Inc., Natick, MA, 1995).
    51. 51)
      • 51. Xie, L., Lu, L., Zhang, D., et al: ‘Improved robust H2 and H filtering for uncertain discrete-time systems’, Automatica, 2004, 40, pp. 873880.
    52. 52)
      • 52. Fridman, E., Shaked, U.: ‘An improved delay-dependent H filtering of linear neutral systems’, IEEE Trans. Signal Process., 2004, 52, pp. 668673.
    53. 53)
      • 53. Yadav, V., Padhi, R., Balakrishnan, S.: ‘Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks’, IEEE Trans. Neural Netw., 2007, 18, pp. 11151128.
    54. 54)
      • 54. Luo, B., Wu, H.-N., Li, H.-X.: ‘Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, pp. 684696.
    55. 55)
      • 55. Zhu, Q.: ‘Asymptotic stability in the pth moment for stochastic differential equations with Levy noise’, J. Math. Anal. Appl., 2014, 416, pp. 126142.
    56. 56)
      • 56. Zhu, Q., Cao, J., Rakkiyappan, R.: ‘Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays’, Nonlinear Dyn., 2015, 79, pp. 10851098.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0724
Loading

Related content

content/journals/10.1049/iet-cta.2016.0724
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address