access icon free Approximate controllability of infinite dimensional system with internal damping dependent on fractional powers of system operator

In this study, a class of models governed by a second-order (in time) evolution differential equation with damping and positive definite, self-adjoint system operator is studied. Damping term has a special, but practically important, form of a finite sum of fractional powers of the system operator. This type of damping operator can be used to model a variety of physical phenomena related to dissipation of energy empirically observed in physical systems. It may be used to model dissipation mechanisms resulting from air damping, internal structural damping, internal viscous damping, etc. Using spectral theory of linear unbounded operators and semi-group theory necessary and sufficient conditions of approximate controllability for second order infinite dimensional system with damping are formulated and proved. Some important, from the practical point of view, remarks and comments are also provided. In particular, necessary condition for approximate controllability is formulated and discussed. Finally, an illustrative example related to approximate controllability of distributed parameter system described by the partial differential equation with higher order spatial differential operators is presented. The example refers to a system describing dynamical behaviour of damped Kirchhoff–Love plate. The study extends earlier results on approximate controllability of damped second-order abstract evolution dynamical systems.

Inspec keywords: distributed parameter systems; controllability; partial differential equations; damping; multidimensional systems

Other keywords: second-order evolution differential equation; semigroup theory; linear unbounded operators; higher order spatial differential operators; physical phenomena; partial differential equation; internal structural damping; damped Kirchhoff–Love plate; internal viscous damping; second order infinite dimensional system; distributed parameter system; air damping; physical systems; approximate controllability; internal damping; damped second-order abstract evolution dynamical systems; positive definite operator; spectral theory; energy dissipation; system operator fractional powers

Subjects: Mathematical analysis; Distributed parameter control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 14. Chen, S., Triggiani, R.: ‘Characterisation of domains of fractional powers of certain operators arising in elastic systems and applications’, J. Differ. Equ., 1990, 88, (2), pp. 279293.
    2. 2)
      • 15. Liu, K., Liu, Z.: ‘Analyticity and differentiability of semigroups associated with elastic systems with damping and gyroscopic forces’, J. Differ. Equ., 1997, 141, (2), pp. 340355.
    3. 3)
      • 31. Timoshenko, S., Woinowsky-Krieger, S.: ‘Theory of plates and shells’ (McGraw-Hill, New York, 1959).
    4. 4)
      • 6. Triggiani, R.: ‘Controllability and observability in banach spaces with bounded operators’, SIAM J. Control, 1975, 13, (2), pp. 462491.
    5. 5)
      • 28. Triggiani, R.: ‘Extensions of rank conditions for controllability and observability to banach spaces with unbounded operators’, SIAM J. Control Optimisation, 1976, 14, (2), pp. 313338.
    6. 6)
      • 27. Pazy, A.: ‘Semigroup of linear operators and applications to partial differential equations’ (Springer-Verlag, New York, 1983).
    7. 7)
      • 3. Klamka, J.: ‘Controllability of dynamical systems. A survey’, Bull. Polish Acad. Sci.: Tech. Sci., 2013, 61, (2), pp. 335342.
    8. 8)
      • 12. Chen, S., Triggiani, R.: ‘Proof of extensions of two conjectures on structural damping for elastic systems: the systems: the case 1/2≤α≤1’, Pac. J. Math., 1989, 136, (1), pp. 1555.
    9. 9)
      • 10. Chen, S., Russell, D.: ‘A mathematical model for linear elastic systems with structural damping’, Q. Appl. Math., 1982, 39, (4), pp. 433454.
    10. 10)
      • 8. Triggiani, R.: ‘A note on the lack of exact controllability for mild solutions in banach spaces’, SIAM J. Control Optimisation, 1977, 15, (3), pp. 407441.
    11. 11)
      • 1. Klamka, J.: ‘Controllability of dynamical systems’ (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991).
    12. 12)
      • 7. Triggiani, R.: ‘On the lack of exact controllability for mild solutions in banach spaces’, J. Math. Anal. Appl., 1975, 50, (2), pp. 438446.
    13. 13)
      • 4. Bensoussan, A., Da Prato, G., Delfour, M.C., et al: ‘Representation and control of infinite dimensional systems’ (Birkhäuser, Boston, 1992).
    14. 14)
      • 9. Triggiani, R.: ‘On the relationship between first and second order controllable systems in banach spaces’, SIAM J. Control Optimisation, 1978, 16, (6), pp. 847859.
    15. 15)
      • 29. Hille, E., Phillips, R.S.: ‘Functional analysis and semigroups’ (American Mathematical Society, Providence, R.I., 1958).
    16. 16)
      • 5. Kaczorek, T.: ‘Linear Control Systems’ (Research Studies Press and John Wiley, New York, 1993).
    17. 17)
      • 21. Respondek, J.S.: ‘Approximate controllability of infinite-dimensional systems of the n-th order’, Int. J. Appl. Math. Comput. Sci., 2008, 18, (2), pp. 199212.
    18. 18)
      • 22. Sakawa, Y.: ‘Feedback control of second order evolution equations with damping’, SIAM J. Control Optimisation, 1984, 22, (3), pp. 343361.
    19. 19)
      • 20. Miller, L.: ‘Non-structural controllability of linear elastic systems with structural damping’, J. Funct. Anal., 2006, 236, (2), pp. 592608.
    20. 20)
      • 13. Chen, S., Triggiani, R.: ‘Gevrey class semigroups arising from elastic systems with gentle dissipation: the case 0<α<1/2’, Proc. Am. Math. Soc., 1990, 110, (2), pp. 401415.
    21. 21)
      • 19. Klamka, J., Wyrwał, J.: ‘Controllability of second-order infinite-dimensional systems’, Syst. Control Lett., 2008, 57, pp. 386391.
    22. 22)
      • 11. Huang, F.: ‘On the mathematical model for linear elastic systems with analytic damping’, SIAM J. Control Optimisation, 1988, 26, (3), pp. 714724.
    23. 23)
      • 18. Wyrwał, J., Klamka, J.: ‘Controllability of second order infinite dimensional linear systems’. Proc. of 13th IEEE Int. Conf. on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, August 2007, pp. 4954.
    24. 24)
      • 17. Klamka, J.: ‘Approximate controllability of second order dynamical systems’, Appl. Math. Comput. Sci., 1992, (2), pp. 135148.
    25. 25)
      • 23. Sakawa, Y.: ‘Feedback control of second order evolution equations with unbounded observation’, Int. J. Control, 1985, 41, (3), pp. 717731.
    26. 26)
      • 26. Grabowski, P.: ‘Lecture notes on optimal control systems’ (AGH University of Science and Technology Press, Cracow, 1999).
    27. 27)
      • 25. Dunford, N., Schwartz, J.: ‘Linear operators’ (Interscience, New York, 1963).
    28. 28)
      • 24. Tanabe, H.: ‘Equations of evolution’ (Pitman, London, 1979).
    29. 29)
      • 16. Kunimatsu, N., Ito, K.: ‘Stabilisation of a non-linear distributed parameter vibratory system’, Int. J. Control, 1988, 48, pp. 23892415.
    30. 30)
      • 30. Kantorovich, L.U., Akilov, G.P.: ‘Functional analysis in normed spaces’ (Pergamont Press, New York, 1964).
    31. 31)
      • 32. Courant, R., Hilbert, D.: ‘Methods of mathematical physics’ (Interscience, New York, 1966).
    32. 32)
      • 2. Curtain, R., Zwart, H.: ‘An introduction to infinite-dimensional linear systems theory’ (Springer Verlag, New York, 1995).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0611
Loading

Related content

content/journals/10.1049/iet-cta.2016.0611
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading