Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust dynamic decoupling control for permanent magnet spherical actuators based on extended state observer

This study presents a robust dynamic decoupling control strategy to solve the trajectory tracking problem for the permanent magnet spherical actuator (PMSA). The dynamic model of PMSA obtained by the Lagrange–Euler formalism is obviously a multi-variable non-linear system with strong cross-couplings. Furthermore, uncertainties such as model errors and external disturbances will also affect the precision of the control system. In the active disturbance rejection control (ADRC) framework, the decoupling problem can be reformulated as disturbance rejection by merging the cross channel interference into the lumped disturbance, which consists of internal dynamics and external disturbances. The lumped disturbance is then estimated using extended state observer (ESO) and canceled out in the control law. Herein, the linear active disturbance rejection control is selected for PMSAs, as the tuning process can be greatly simplified by making all the parameters of ESO or controller a function of bandwidth. Simulations and experiments are presented to corroborate the effectiveness and robustness of the proposed strategy, showing that the proposed control algorithm can decouple and linearise the system in the presence of model errors as well as the load and random disturbances. Meanwhile, the modified system has better static and dynamic performances with strong robustness to uncertainties.

References

    1. 1)
      • 19. Su, J., Qiu, W., Ma, H., et al: ‘Calibration-free robotic eye-hand coordination based on an auto disturbance-rejection controller’, IEEE Trans. Robot., 2004, 20, (5), pp. 899907.
    2. 2)
      • 26. Gong, X., Tian, Y., Bai, Y., et al: ‘Trajectory tacking control of a quad-rotor based on active disturbance rejection control’, 2012 IEEE Int. Conf. IEEE Autom. Logist. (ICAL), 2012, pp. 254259.
    3. 3)
      • 31. Gao, Z.: ‘Scaling and bandwidth-parameterization based controller tuning’. Proc. American Control Conf., 2006, vol. 6, pp. 49894996.
    4. 4)
      • 11. Guo, W., Yang, J., Yang, W., et al: ‘Regulation quality for frequency response of turbine regulating system of isolated hydroelectric power plant with surge tank’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 528538.
    5. 5)
      • 13. Guo, W., Yang, J., Chen, J., et al: ‘Nonlinear modeling and dynamic control of hydro-turbine governing system with upstream surge tank and sloping ceiling tailrace tunnel’, Nonlinear Dyn., 2016, 84, (3), pp. 13831397.
    6. 6)
      • 21. Su, Y.X., Zheng, C.H., Duan, B.Y.: ‘Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 814823.
    7. 7)
      • 22. Li, S., Liu, Z.: ‘Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 30503059.
    8. 8)
      • 17. Chu, J., Niguchi, N., Hirata, K.: ‘Feedback control of outer rotor spherical actuator using adaptive neuro-fuzzy inference system’. 2013 Seventh Int. Conf. IEEE Sens. Technol. (ICST), 2013, pp. 401405.
    9. 9)
      • 14. Lee, K.-M., Roth, R.B., Zhou, Z.: ‘Dynamic modeling and control of a ball-joint-like variable-reluctance spherical motor’, J. Dyn. Syst. Meas. Control, 1996, 118, (1), pp. 2940.
    10. 10)
      • 10. Son, H., Lee, K.-M.: ‘Control system design and input shape for orientation of spherical wheel motor’, Control Eng. Pract., 2014, 24, pp. 120128.
    11. 11)
      • 7. Xia, C., Song, P., Li, H., et al: ‘Research on torque calculation method of permanent-magnet spherical motor based on the finite-element method’, IEEE Trans. Magn., 2009, 45, (4), pp. 20152022.
    12. 12)
      • 23. Li, S., Yang, X., Yang, D.: ‘Active disturbance rejection control for high pointing accuracy and rotation speed’, Automatica, 2009, 45, (8), pp. 18541860.
    13. 13)
      • 16. Xia, C., Guo, C., Shi, T.: ‘A neural-network-identifier and fuzzy-controller-based algorithm for dynamic decoupling control of permanent-magnet spherical motor’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 28682878.
    14. 14)
      • 20. Su, J., Ma, H., Qiu, W., et al: ‘Task-independent robotic uncalibrated hand-eye coordination based on the extended state observer’, IEEE Trans. Syst. Man Cybern. B Cybern., 2004, 34, (4), pp. 19171922.
    15. 15)
      • 4. Son, H., Lee, K.-M.: ‘Open-loop controller design and dynamic characteristics of a spherical wheel motor’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 34753482.
    16. 16)
      • 30. Miklosovic, R., Gao, Z.: ‘A dynamic decoupling method for controlling high performance turbofan engines’. Proc. of the 16th IFAC World Congress, 2005, pp. 48.
    17. 17)
      • 24. Xia, Y., Zhu, Z., Fu, M., et al: ‘Attitude tracking of rigid spacecraft with bounded disturbances’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 647659.
    18. 18)
      • 25. Wang, J., Ma, H., Cai, W., et al: ‘Research on micro quadrotor control based on adrc’, J. Projectiles Rockets, Missiles Guid., 2008, 3, p. 008.
    19. 19)
      • 29. Hall, C.E., Shtessel, Y.B.: ‘Sliding mode disturbance observer-based control for a reusable launch vehicle’, J. Guid. Control Dyn., 2006, 29, (6), pp. 13151328.
    20. 20)
      • 32. Gao, Z.: ‘Active disturbance rejection control: a paradigm shift in feedback control system design’. 2006 IEEE American Control Conf., 2006, 7pp.
    21. 21)
      • 33. Zheng, Q., Gao, L.Q., Gao, Z.: ‘On validation of extended state observer through analysis and experimentation’, J. Dyn. Syst. Meas. Control, 2012, 134, (2), p. 024505.
    22. 22)
      • 27. Huang, Y., Xu, K., Han, J., et al: ‘Flight control design using extended state observer and non-smooth feedback’. Proc. IEEE Conf. on Decision and Control, 2001, Vol. 1, pp. 223228, available at: http://www.ieeecss.org.
    23. 23)
      • 5. Wang, J., Wang, W., Jewell, G.W., et al: ‘A novel spherical permanent magnet actuator with three degrees-of-freedom’, IEEE Trans. Magn., 1998, 34, (4), pp. 20782080.
    24. 24)
      • 15. Wang, W., Wang, J., Jewell, G., et al: ‘Design and control of a novel spherical permanent magnet actuator with three degrees of freedom’, IEEE/ASME Trans. Mechatron., 2003, 8, (4), pp. 457468.
    25. 25)
      • 1. Toyama, S., Sugitani, S., Guoqiang, Z., et al: ‘Multi degree of freedom spherical ultrasonic motor’. Proc. 1995 IEEE Int. Conf. on Robot. Autom.1995, Vol. 3, pp. 29352940.
    26. 26)
      • 9. Bai, K., Lee, K.-M.: ‘Direct field-feedback control of a ball-joint-like permanent-magnet spherical motor’, IEEE/ASME Trans. Mechatron., 2014, 19, (3), pp. 975986.
    27. 27)
      • 6. Xia, C., Li, H., Shi, T.: ‘3-d magnetic field and torque analysis of a novel Halbach array permanent-magnet spherical motor’, IEEE Trans. Magn., 2008, 44, (8), pp. 20162020.
    28. 28)
      • 2. Shigeki, T., Guoqiang, Z., Osamu, M.: ‘Development of new generation spherical ultrasonic motor’. Proc. 1996 IEEE Int. Conf. on Robot. Autom., 1996, Vol. 3, pp. 28712876.
    29. 29)
      • 12. Guo, W., Yang, J., Wang, M., et al: ‘Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance’, Energy Convers. Manag., 2015, 106, pp. 127138.
    30. 30)
      • 18. Zhang, L., Chen, W., Liu, J., et al: ‘A robust adaptive iterative learning control for trajectory tracking of permanent-magnet spherical actuator’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 291301.
    31. 31)
      • 3. Lee, K.-M., Kwan, C.-K.: ‘Design concept development of a spherical stepper for robotic applications’, IEEE Trans. Robot. Autom., 1991, 7, (1), pp. 175181.
    32. 32)
      • 8. Chen, W., Zhang, L., Yan, L., et al: ‘Design and control of a three degree-of-freedom permanent magnet spherical actuator’, Sens. Actuators A Phys., 2012, 180, pp. 7586.
    33. 33)
      • 28. Zheng, Q., Chen, Z., Gao, Z.: ‘A practical approach to disturbance decoupling control’, Control Eng. Pract., 2009, 17, (9), pp. 10161025.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0551
Loading

Related content

content/journals/10.1049/iet-cta.2016.0551
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address