access icon free Stability and steady-state analysis of distributed cooperative droop controlled DC microgrids

Distributed cooperative droop control consisting of the primary decentralised droop control and the secondary distributed control is studied, which aims to achieve an exact current sharing between generators, worked in the voltage control mode, of DC microgrids. For the DC microgrids with the distributed cooperative droop control, the dynamic stability has not been well investigated although its steady performance has been widely reported. This study focuses on the stability problem of DC microgrids with fixed topology and shows it is equivalent to the semistability problem of a class of second-order matrix systems. Some further sufficient conditions as well followed. The steady state is analysed deeply for some special cases. A DC microgrid of four nodes is simulated on the Matlab/Simulink platform to illustrate the efficacy of analytic results.

Inspec keywords: power generation control; power grids; voltage control; electric current control; matrix algebra; distributed control; distributed power generation; power system dynamic stability

Other keywords: voltage control mode; steady-state analysis; dynamic stability analysis; secondary distributed control; primary decentralised droop control; generator current sharing; second-order matrix system; Matlab-Simulink platform; semistability problem; distributed cooperative droop controlled DC microgrid

Subjects: Control of electric power systems; Voltage control; Stability in control theory; Power system control; Algebra; Distributed power generation; Current control; Algebra

References

    1. 1)
      • 14. Radwan, A.A.A., Mohamed, Y.A.I.: ‘Assessment and mitigation of interaction dynamics in hybrid AC/DC distribution generation systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 13821393.
    2. 2)
      • 8. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    3. 3)
      • 17. Bernstein, D.S., Bhat, S.P.: ‘Lyapunov stability’, semistability, and asymptotic stability of matrix second-order systems', J. Mech. Des., 1995, 117(B), pp. 145153.
    4. 4)
      • 13. Dragicevic, T., Guerrero, J.M., Vasquez, J.C., et al: ‘Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 695706.
    5. 5)
      • 9. Anand, S., Fernandes, B.G., Guerrero, M.: ‘Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage dc microgrids’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 19001913.
    6. 6)
      • 19. Hui, Q., Haddad, W.M.: ‘H2 optimal semistable stabilisation for linear discrete-time dynamical systems with applications to network consensus’, Int. J. Control, 2009, 82, (3), pp. 456469.
    7. 7)
      • 20. Hui, Q., Haddad, W.M.: ‘Distributed nonlinear control algorithms for network consensus’, Automatica, 2008, 44, (9), pp. 23752381.
    8. 8)
      • 21. Andreasson, M., Dimarogonas, D.V., Sandberg, H., et al: ‘Distributed controllers for multi-terminal HVDC transmission systems’, 2014, arXiv preprint arXiv:1411.1864.
    9. 9)
      • 7. Beerten, J., Belmans, R.: ‘Analysis of power sharing and voltage deviations in droop-controlled dc grids’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 45884597.
    10. 10)
      • 18. Diwekar, A.M., Yedavalli, R.K.: ‘Stability of matrix second-order systems: new conditions and perspectives’, IEEE Trans. Autom. Control, 1999, 44, (9), pp. 17731777.
    11. 11)
      • 23. Xiang, J., Wang, Y., Li, Y., et al: ‘Stability and steady state analysis of distributed cooperative droop controlled dc microgrids’, 2015, ArXiv e-prints arXiv:1561.
    12. 12)
      • 2. Elsayed, A.T., Mohamed, A.A., Mohammed, O.A.: ‘DC microgrids and distribution systems: An overview’, Electr. Power Syst. Res., 2015, 119, (0), pp. 407417.
    13. 13)
      • 10. Lu, X., Guerrero, J.M., Sun, K., et al: ‘An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 18001812.
    14. 14)
      • 15. Anand, S., Fernandes, B.G.: ‘Reduced-order model and stability analysis of low-voltage dc microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 50405049.
    15. 15)
      • 16. Stephen, L.C., Nicholas, J.R.: ‘Singular perturbation of autonomous linear systems’, SIAM J. Math. Anal., 1979, 10, (3), pp. 542551.
    16. 16)
      • 12. Nasirian, V., Davoudi, A., Lewis, F.L., et al: ‘Distributed adaptive droop control for dc distribution systems’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 944956.
    17. 17)
      • 11. Nasirian, V., Moayedi, S., Davoudi, A., et al: ‘Distributed cooperative control of dc microgrids’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 22882303.
    18. 18)
      • 22. Dorfler, F., Bullo, F.: ‘Kron reduction of graphs with applications to electrical networks’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (1), pp. 150163.
    19. 19)
      • 6. Haileselassie, T.M., Uhlen, K.: ‘Impact of DC line voltage drops on power flow of MTDC using droop control’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14411449.
    20. 20)
      • 24. Araki, M.: ‘Stability of large-scale nonlinear systems – quadratic-order theory of composite-system method using m-matrices’, IEEE Trans. Autom. Control, 1978, 23, (2), pp. 129142.
    21. 21)
      • 5. Johnson, B.K., Lasseter, R.H., Alvarado, F.L., et al: ‘Expandable multiterminal dc systems based on voltage droop’, IEEE Trans. Power Deliv., 1993, 8, (4), pp. 19261932.
    22. 22)
      • 3. Planas, E., Andreu, J., Gárate, J.I., et al: ‘AC and DC technology in microgrids: a review’, Renew. Sustain. Energy Rev., 2015, 43, (0), pp. 726749.
    23. 23)
      • 4. Mokhtari, G., Nourbakhsh, G., Ghosh, A.: ‘Smart coordination of energy storage units (ESUs) for voltage and loading management in distribution networks’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 48124820.
    24. 24)
      • 1. Justo, J.J., Mwasilu, F., Lee, J., et al: ‘AC-microgrids versus DC-microgrids with distributed energy resources: a review’, Renew. Sustain. Energy Rev., 2013, 24, (0), pp. 387405.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0496
Loading

Related content

content/journals/10.1049/iet-cta.2016.0496
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading