© The Institution of Engineering and Technology
In this study, the authors aim to study explicit iterative algorithms for solving coupled discretetime Lyapunov matrix equations. First, an explicit iterative algorithm based on fixed point theory of dynamic equations is presented via adding a tuning parameter. Second, a necessary and sufficient condition is provided for the convergence of the proposed algorithm. Moreover, the optimal value of the tuning parameter is derived for the fastest convergence of the algorithm. Third, by using the latest updated information, a modified version of the presented explicit iterative algorithm is also established with a necessary and sufficient condition being provided to guarantee the convergence of the modified algorithm. Finally, a numerical example is given to demonstrate the effectiveness of the proposed algorithms.
References


1)

1. Costa, O.L.V., Fragoso, M.D.: ‘Stability results for discretetime linear systems with Markovian jumping parameters’, J. Math. Anal. Appl., 1993, 179, (1), pp. 154–178.

2)

2. Boukas, E.K., Yang, H.: ‘Stability of discretetime linear systems with Markovian jumping parameters’, Math. Control Signals Syst., 1995, 8, (4), pp. 390–402.

3)

3. Ji, Y.: ‘Stability and control of discretetime jump linear systems’, ControlTheory Adv. Technol., 1991, 7, (2), pp. 247–270.

4)

4. Zhang, L., Huang, B., Lam, J.: ‘H∞ model reduction of Markovian jump linear systems’, Syst. Control Lett., 2003, 50, (2), pp. 103–118.

5)

5. Sun, M., Lam, J.: ‘Model reduction of discrete Markovian jump systems with timeweighted H2 performance’, Int. J. Robust Nonlinear Control, 2016, 26, (3), pp. 401–425.

6)

6. Shi, P., Boukas, E.K., Shi, Y.: ‘On Stochastic stabilization of discretetime Markovian jump systems with delay in state’, Stoch. Anal. Appl., 2003, 21, (4), pp. 935–951.

7)

7. Boukas, E.K., Benzaouia, A.: ‘Stability of discretetime linear systems with Markovian jumping parameters and constrained control’, IEEE Trans. Autom. Control, 2002, 47, (3), pp. 516–521.

8)

8. Borno, I., Gajic, Z.: ‘Parallel algorithm for solving coupled algebraic Lyapunov equations of discretetime jump linear systems’, Comput. Math. Appl., 1995, 30, (7), pp. 1–4.

9)

9. Wu, A.G., Duan, G.R.: ‘New iterative algorithms for solving coupled Markovian jump Lyapunov equations’, IEEE Trans. Autom. Control., 2015, 60, (1), pp. 289–294.

10)

10. Wang, Q., Lam, J., Wei, Y., et al: ‘Iterative solutions of coupled discrete Markovian jump Lyapunov equations’, Comput. Math. Appl., 2008, 55, (4), pp. 843–850.

11)

11. Wu, A.G., Chang, M.F.: ‘Currentestimationbased iterative algorithms for solving periodic Lyapunov matrix equations’, IET Control Theory Appl., 2016, .

12)

12. Tong, L., Wu, A.G., Duan, G.R.: ‘Finite iterative algorithm for solving coupled Lyapunov equations appearing in discretetime Markov jump linear systems’, IET Control Theory Appl., 2010, 4, (10), pp. 2223–2231.

13)

13. Zhou, B., Lam, J., Duan, G.R.: ‘Convergence of gradientbased iterative solution of coupled Markovian jump Lyapunov equations’, Comput. Math. Appl., 2008, 56, (12), pp. 3070–3078.

14)

14. Zhou, B., Duan, G.R., Li, Z.Y.: ‘Gradient based iterative algorithm for solving coupled matrix equations’, Syst. Control Lett., 2009, 58, (5), pp. 327–333.

15)

15. Hajarian, M.: ‘Extending the GPBiCG algorithm for solving the generalized Sylvestertranspose matrix equation’, Int. J. Control Autom. Syst., 2014, 12, (6), pp. 1362–1365.

16)

16. Hajarian, M.: ‘Matrix GPBiCG algorithms for solving the general coupled matrix equations’, IET Control Theory Appl., 2015, 9, (1), pp. 74–81.

17)

17. Lv, L., Zhang, L.: ‘New iterative algorithms for coupled matrix equations’, J. Comput. Anal. Appl., 2015, 19, (6), pp. 1536–1543.

18)

18. Brewer, J.: ‘Kronecker products and matrix calculus in system theory’, IEEE Trans. Circuits Syst., 1978, 25, (9), pp. 772–781.

19)

19. Bibby, J.: ‘Axiomatisations of the average and a further generalisation of monotonic sequences’, Glasgow Math. J., 1974, 15, (01), pp. 63–65.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2016.0437
Related content
content/journals/10.1049/ietcta.2016.0437
pub_keyword,iet_inspecKeyword,pub_concept
6
6