http://iet.metastore.ingenta.com
1887

Sampled-data design for robust control of open two-level quantum systems with operator errors

Sampled-data design for robust control of open two-level quantum systems with operator errors

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a sampled-data design method for robust control of open two-level quantum systems with operator errors. The required control performance is characterised using the concept of a sliding mode domain related to fidelity, coherence or purity. The authors have designed a control law offline and then utilise it online for a two-level system subject to decoherence with operator errors in the system model. They analyse three cases of approximate amplitude damping decoherence, approximate phase damping decoherence and approximate depolarising decoherence. They design specific sampling periods for these cases that can guarantee the required control performance.

References

    1. 1)
      • 1. Dong, D., Petersen, I.R.: ‘Quantum control theory and applications: a survey’, IET Control Theory Appl., 2010, 4, pp. 26512671.
    2. 2)
      • 2. Wiseman, H.M., Milburn, G.J.: ‘Quantum measurement and control’ (Cambridge University Press, Cambridge, England, 2010).
    3. 3)
      • 3. Altafini, C., Ticozzi, F.: ‘Modeling and control of quantum systems: an introduction’, IEEE Trans. Autom. Control, 2012, 57, pp. 18981917.
    4. 4)
      • 4. Nielsen, M.A., Chuang, I.L.: ‘Quantum Computation and Quantum Information’ (Cambridge University Press, Cambridge, England, 2000).
    5. 5)
      • 5. D'Alessandro, D.: ‘Introduction to quantum control and dynamics’ (Chapman & Hall/CRC, 2007).
    6. 6)
      • 6. Boscain, U., Mason, P.: ‘Time minimal trajectories for a spin 1/2 particle in a magnetic field’, J. Math. Phys., 2006, 47, p. 062101.
    7. 7)
      • 7. Fu, S., Chen, M.Z.Q.: ‘Optimal control of single spin- 1/2 quantum systems’, IET Control Theory Appl., 2014, 8, pp. 8693.
    8. 8)
      • 8. Doherty, A.C., Habib, S., Jacobs, K., et al: ‘Quantum feedback control and classical control theory’, Phys. Rev. A, 2000, 62, p. 012105.
    9. 9)
      • 9. van Handel, R., Stockton, J.K., Mabuchi, H.: ‘Feedback control of quantum state reduction’, IEEE Trans. Autom. Control, 2005, 50, (6), pp. 768780.
    10. 10)
      • 10. Shabani, A., Jacobs, K.: ‘Locally optimal control of quantum systems with strong feedback’, Phys. Rev. Lett., 2008, 101, p. 230403.
    11. 11)
      • 11. Qi, B., Pan, H., Guo, L.: ‘Further results on stabilizing control of quantum system’, IEEE Trans. Autom. Control, 2013, 58, (5), pp. 13491354.
    12. 12)
      • 12. Sayrin, C., Dotsenko, I., Zhou, X., et al: ‘Real-time quantum feedback prepares and stabilizes photon number states’, Nature, 2011, 477, pp. 7377.
    13. 13)
      • 13. Mirrahimi, M., van Handel, R.: ‘Stabilizing feedback controls for quantum systems’, SIAM Optim. Control, 2007, 46, (2), pp. 445467.
    14. 14)
      • 14. Qi, B., Guo, L.: ‘Is measurement-based feedback still better for quantum control systems?’, Syst. Control Lett., 2010, 59, pp. 333339.
    15. 15)
      • 15. James, M.R., Nurdin, H.I., Petersen, I.R.: ‘H control of linear quantum stochastic systems’, IEEE Trans. Autom. Control, 2008, 53, pp. 17871803.
    16. 16)
      • 16. James, M.R.: ‘Risk-sensitive optimal control of quantum systems’, Phys. Rev. A, 2004, 69, p. 032108.
    17. 17)
      • 17. Dong, D., Petersen, I.R.: ‘Sliding mode control of quantum systems’, New J. Phys., 2009, 11, p. 105033.
    18. 18)
      • 18. Dong, D., Petersen, I.R.: ‘Sliding mode control of two-level quantum systems’, Automatica, 2012, 48, pp. 725735.
    19. 19)
      • 19. Soare, A., Ball, H., Hayes, D., et al: ‘Experimental noise filtering by quantum control’, Nat. Phys., 2014, 10, pp. 825829.
    20. 20)
      • 20. Chen, C., Dong, D., Long, R., et al: ‘Sampling-based learning control of inhomogeneous quantum ensembles’, Phys. Rev. A, 2014, 89, p. 023402.
    21. 21)
      • 21. Dong, D., Chen, C., Qi, B., et al: ‘Robust manipulation of superconducting qubits in the presence of fluctuations’, Sci. Rep., 2015, 5, p. 7873.
    22. 22)
      • 22. Breuer, H.-P., Petruccione, F.: ‘The theory of open quantum systems’ (Oxford University Press, Oxford, UK, 2002, 1st edn.).
    23. 23)
      • 23. Lidar, D.A., Chuang, I.L., Whaley, K.B.: ‘Decoherence-free subspaces for quantum computation’, Phys. Rev. Lett., 1999, 81, pp. 25942597.
    24. 24)
      • 24. Knill, E., Laflamme, R., Viola, L.: ‘Theory of quantum error correction for general noise’, Phys. Rev. Lett., 2000, 84, pp. 25252528.
    25. 25)
      • 25. Viola, L., Knill, E., Lloyd, S.: ‘Dynamical decoupling of open quantum systems’, Phys. Rev. Lett., 1999, 82, pp. 24172421.
    26. 26)
      • 26. Qi, B.: ‘A two-step strategy for stabilizing control of quantum systems with uncertainties’, Automatica, 2013, 49, pp. 834839.
    27. 27)
      • 27. Ticozzi, F., Viola, L.: ‘Quantum Markovian subsystems: invariance’, attractivity, and control', IEEE Trans. Autom. Control, 2008, 53, pp. 20482063.
    28. 28)
      • 28. Dong, D., Petersen, I.R., Rabitz, H.: ‘Sampled-data design for robust control of a single qubit’, IEEE Trans. Autom. Control, 2013, 58, pp. 26542659.
    29. 29)
      • 29. Dong, D., Petersen, I.R., Rabitz, H.: ‘Sampled-data design for robust decoherence control of a single qubit’. Proc. of 51st IEEE Conf. on Decision and Control, Maui, USA, 10–13 December 2012, pp. 16681673.
    30. 30)
      • 30. Wang, Y., Chen, C., Dong, D.: ‘Further results on sampled-data design for robust control of a single qubit’, Int. J. Control, 2014, 87, pp. 20562064.
    31. 31)
      • 31. Dong, D., Petersen, I.R.: ‘Notes on sliding mode control of two-level quantum systems’, Automatica, 2012, 48, pp. 30893097.
    32. 32)
      • 32. Dong, D., Petersen, I.R., Yi, X.X., et al: ‘Sampled-data design for decoherence control of a single qubit with operator errors’. Proc. of 2012 Australian Control Conf., Sydney, Australia, 15–16 November 2012, pp. 1318.
    33. 33)
      • 33. Maalouf, A.I., Petersen, I.R.: ‘Sampled-data LQG control for a class of linear quantum systems’, Syst. Control Lett., 2012, 61, pp. 369374.
    34. 34)
      • 34. Itano, W.M., Heinzen, D.J., Bollinger, J.J., et al: ‘Quantum Zeno effect’, Phys. Rev. A, 1990, 41, pp. 22952300.
    35. 35)
      • 35. Beige, A., Braun, D., Tregenna, B., et al: ‘Quantum computing using dissipation to remain in a decoherence-free subspace’, Phys. Rev. Lett., 2000, 85, pp. 17621765.
    36. 36)
      • 36. Lindblad, G.: ‘On the generators of quantum dynamical semigroups’, Commun. Math. Phys., 1976, 48, pp. 119130.
    37. 37)
      • 37. Lidar, D.A., Schneider, S.: ‘Stabilizing qubit coherence via tracking-control’, Quantum Inf. Comput., 2005, 5, pp. 350363.
    38. 38)
      • 38. Zhang, J., Wu, R.B., Li, C.W., et al: ‘Protecting coherence and entanglement by quantum feedback controls’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 619633.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0368
Loading

Related content

content/journals/10.1049/iet-cta.2016.0368
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address