http://iet.metastore.ingenta.com
1887

Fault estimation filter design for discrete-time Takagi–Sugeno fuzzy systems

Fault estimation filter design for discrete-time Takagi–Sugeno fuzzy systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the fault estimation problem of discrete-time Takagi–Sugeno fuzzy systems with low-frequency faults. A fault estimation filter is designed to solve this problem. To make the estimation error as small as possible in the presence of high-frequency disturbances, the filter is designed to satisfy two finite-frequency H performance indices simultaneously. An algorithm is proposed to calculate the parameters of the desired filter. The obtained filter can estimate the faults in low-frequency domain effectively, e.g. stuck faults. For comparison, a full-frequency fault estimation method is also given. An example is given to illustrate advantages of the proposed finite-frequency method.

References

    1. 1)
      • 1. Chen, J., Patton, R.: ‘Robust model-based fault diagnosis for dynamic systems’ (Kluwer Academic Publishers, Dordrecht, 1998).
    2. 2)
      • 2. Ding, S.X.: ‘Model-based fault diagnosis techniques – design schemes, algorithms and tools’ (Springer-Verlag, 2013).
    3. 3)
      • 3. Wang, H., Yang, G.-H.: ‘Fault estimations for linear systems with polytopic uncertainties’, Int. J. Syst. Control Commun., 2008, 1, (1), pp. 5371.
    4. 4)
      • 4. Wang, H., Yang, G.-H.: ‘A finite frequency domain approach to fault detection for linear discrete-time systems’, Int. J. Control, 2008, 81, (7), pp. 11621171.
    5. 5)
      • 5. Iwasaki, T., Hara, S.: ‘Generalized KYP lemma: unified frequency domain inequalities with design applications’, IEEE Trans. Autom. Control, 2005, 50, (1), pp. 4159.
    6. 6)
      • 6. Persis, C.D., Isidori, A.: ‘A geometric approach to nonlinear fault detection and isolation’, IEEE Trans. Autom. Control, 2001, 46, (6), pp. 853865.
    7. 7)
      • 7. Hammouri, H., Kinnaert, M., Yaagoubi, E.H.E.: ‘Observer-based approach to fault detection and isolation for nonlinear systems’, IEEE Trans. Autom. Control, 1999, 44, (10), pp. 18791884.
    8. 8)
      • 8. Zhang, X., Polycarpou, M.M., Parisini, T.: ‘Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation’, Automatica, 2010, 46, (2), pp. 290299.
    9. 9)
      • 9. Wu, Y., Su, H., Shi, P., et al: ‘Consensus of multi-agent systems using aperiodic sampled-data control’, IEEE Trans. Cybern., 2016, 46, (9), pp. 21322143.
    10. 10)
      • 10. Wu, Y., Su, H., Lu, R., et al: ‘Passivity based non-fragile control for uncertain Markov jump systems with aperiodic sampling’, Syst. Control Lett., 2015, 85, pp. 3543.
    11. 11)
      • 11. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE Trans. Syst. Man Cybern., 1985, SMC-15, (1), pp. 116132.
    12. 12)
      • 12. Tanaka, K., Sugeno, M.: ‘Stability analysis and design of fuzzy systems’, Fuzzy Sets Syst., 1992, 45, pp. 135156.
    13. 13)
      • 13. Johansson, M., Rantzer, A., Arzen, K.: ‘Piecewise quadratic stability of fuzzy systems’, IEEE Trans. Fuzzy Syst., 1999, 7, (6), pp. 713722.
    14. 14)
      • 14. Feng, G.: ‘A survey on analysis and design of model-based fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (5), pp. 676697.
    15. 15)
      • 15. Qiu, J., Feng, G., Gao, H.: ‘Static-output-feedback H control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov functions’, IEEE Trans. Fuzzy Syst., 2013, 21, (2), pp. 245261.
    16. 16)
      • 16. Fang, C.-H., Liu, Y.-S., Kau, S.-W., et al: ‘A new LMI-based approach to relaxed quadratic stabilization of T–S fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (3), pp. 386397.
    17. 17)
      • 17. Oliveira, R.C.L.F., Peres, P.L.D.: ‘Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter dependent solutions via LMI relaxations’, IEEE Trans. Autom. Control, 2007, 52, (7), pp. 13341340.
    18. 18)
      • 18. Xie, X., Yue, D., Zhang, H., et al: ‘Control synthesis of discrete-time T–S fuzzy systems: reducing the conservatism whilst alleviating the computational burden’, IEEE Trans. Cybern., 2016, DOI (identifier) 10.1109/TCYB.2016.2582747.
    19. 19)
      • 19. Xie, X., Yue, D., Ma, T., et al: ‘Further studies on control synthesis of discrete-time T–S fuzzy systems via augmented multi-indexed matrix approach’, IEEE Trans. Cybern., 2014, 44, (12), pp. 27842791.
    20. 20)
      • 20. Dong, J., Yang, G.-H.: ‘Reliable state feedback control of T–S fuzzy systems with sensor faults’, IEEET. Fuzzy Syst., 2015, 23, (2), pp. 421433.
    21. 21)
      • 21. Wang, H.O., Tanaka, K., Griffin, M.F.: ‘An approach to fuzzy control of nonlinear systems: Stability and design issues’, IEEE Trans. Fuzzy Syst., 1996, 4, (1), pp. 1423.
    22. 22)
      • 22. Zhang, D., Cai, W., Xie, L., et al: ‘Nonfragile Distributed Filtering for T–S Fuzzy systems in sensor networks’, IEEE Trans. Fuzzy Syst., 2015, 23, (5), pp. 18831890.
    23. 23)
      • 23. Zhang, D., Shi, P., Wang, Q.-G., et al: ‘Distributed non-fragile filtering for T–S fuzzy systems with event-based communications’, Fuzzy Sets Syst., doi:10.1016/j.fss.2016.02.009.
    24. 24)
      • 24. Zhang, D., Song, H.Y., Yu, L.: ‘Robust fuzzy-model-based filtering for nonlinear cyber-physical systems with multiple stochastic incomplete measurements’, IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2016.2551200.
    25. 25)
      • 25. Ding, D., Yang, G.-H.: ‘Fuzzy filter design for nonlinear systems in finite-frequency domain’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 935945.
    26. 26)
      • 26. Nguang, S.K., Shi, P., Ding, S.: ‘Fault detection for uncertain fuzzy systems: an LMI approach’, IEEE Trans. Fuzzy Syst., 2007, 15, (6), pp. 12511262.
    27. 27)
      • 27. Li, X.-J., Yang, G.-H.: ‘Fault detection for T–S fuzzy systems with unknown membership functions’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 139152.
    28. 28)
      • 28. Yang, G.-H., Wang, H.: ‘Fault detection and isolation for a class of uncertain state-feedback fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2015, 23, (1), pp. 139151.
    29. 29)
      • 29. Li, L., Ding, S.X., Qiu, J., et al: ‘Weighted fuzzy observer-based fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions’, IEEE Trans. Fuzzy Syst., 2016, DOI 10.1109/TFUZZ.2016.2514371.
    30. 30)
      • 30. Yang, H., Xia, Y., Liu, B.: ‘Fault detection for T–S fuzzy discrete systems in finite-frequency domain’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (4), pp. 911920.
    31. 31)
      • 31. Zhang, K., Jiang, B., Shi, P., et al: ‘Analysis and design of robust H fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems’, IEEE Trans. Cybern., 2015, 45, (7), pp. 12251235.
    32. 32)
      • 32. Li, X.-J., Yang, G.-H.: ‘Fault detection in finite frequency domain for Takagi–Sugeno fuzzy systems with sensor faults’, IEEE Trans. Cybern., 2014, 44, (8), pp. 14461458.
    33. 33)
      • 33. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: ‘Signals and systems’ (Pearson, 1996).
    34. 34)
      • 34. Zhou, S., Lam, J., Xue, A.: ‘H filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach’, Fuzzy Sets Syst., 2007, 158, pp. 180193.
    35. 35)
      • 35. Skelton, R.E., Iwasaki, T.: ‘A unified algebraic approach to linear control design’ (Taylor & Francis, 1998).
    36. 36)
      • 36. Pawluszewicz, E., Bartosiewicz, Z.: ‘Euler's discretization and dynamic equivalence of nonlinear control systems’, Nonlinear Control, 2001, 2, pp. 183191.
    37. 37)
      • 37. Tanaka, K., Ikeda, T., Wang, H.O.: ‘Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H control theory’, and linear matrix inequalities', IEEE Trans. Fuzzy Syst., 1996, 4, (1), pp. 113.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0318
Loading

Related content

content/journals/10.1049/iet-cta.2016.0318
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address