Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fault estimation filter design for discrete-time Takagi–Sugeno fuzzy systems

This study is concerned with the fault estimation problem of discrete-time Takagi–Sugeno fuzzy systems with low-frequency faults. A fault estimation filter is designed to solve this problem. To make the estimation error as small as possible in the presence of high-frequency disturbances, the filter is designed to satisfy two finite-frequency H performance indices simultaneously. An algorithm is proposed to calculate the parameters of the desired filter. The obtained filter can estimate the faults in low-frequency domain effectively, e.g. stuck faults. For comparison, a full-frequency fault estimation method is also given. An example is given to illustrate advantages of the proposed finite-frequency method.

References

    1. 1)
      • 35. Skelton, R.E., Iwasaki, T.: ‘A unified algebraic approach to linear control design’ (Taylor & Francis, 1998).
    2. 2)
      • 19. Xie, X., Yue, D., Ma, T., et al: ‘Further studies on control synthesis of discrete-time T–S fuzzy systems via augmented multi-indexed matrix approach’, IEEE Trans. Cybern., 2014, 44, (12), pp. 27842791.
    3. 3)
      • 33. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: ‘Signals and systems’ (Pearson, 1996).
    4. 4)
      • 20. Dong, J., Yang, G.-H.: ‘Reliable state feedback control of T–S fuzzy systems with sensor faults’, IEEET. Fuzzy Syst., 2015, 23, (2), pp. 421433.
    5. 5)
      • 32. Li, X.-J., Yang, G.-H.: ‘Fault detection in finite frequency domain for Takagi–Sugeno fuzzy systems with sensor faults’, IEEE Trans. Cybern., 2014, 44, (8), pp. 14461458.
    6. 6)
      • 24. Zhang, D., Song, H.Y., Yu, L.: ‘Robust fuzzy-model-based filtering for nonlinear cyber-physical systems with multiple stochastic incomplete measurements’, IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2016.2551200.
    7. 7)
      • 14. Feng, G.: ‘A survey on analysis and design of model-based fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (5), pp. 676697.
    8. 8)
      • 7. Hammouri, H., Kinnaert, M., Yaagoubi, E.H.E.: ‘Observer-based approach to fault detection and isolation for nonlinear systems’, IEEE Trans. Autom. Control, 1999, 44, (10), pp. 18791884.
    9. 9)
      • 11. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE Trans. Syst. Man Cybern., 1985, SMC-15, (1), pp. 116132.
    10. 10)
      • 2. Ding, S.X.: ‘Model-based fault diagnosis techniques – design schemes, algorithms and tools’ (Springer-Verlag, 2013).
    11. 11)
      • 9. Wu, Y., Su, H., Shi, P., et al: ‘Consensus of multi-agent systems using aperiodic sampled-data control’, IEEE Trans. Cybern., 2016, 46, (9), pp. 21322143.
    12. 12)
      • 36. Pawluszewicz, E., Bartosiewicz, Z.: ‘Euler's discretization and dynamic equivalence of nonlinear control systems’, Nonlinear Control, 2001, 2, pp. 183191.
    13. 13)
      • 30. Yang, H., Xia, Y., Liu, B.: ‘Fault detection for T–S fuzzy discrete systems in finite-frequency domain’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (4), pp. 911920.
    14. 14)
      • 29. Li, L., Ding, S.X., Qiu, J., et al: ‘Weighted fuzzy observer-based fault detection approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions’, IEEE Trans. Fuzzy Syst., 2016, DOI 10.1109/TFUZZ.2016.2514371.
    15. 15)
      • 3. Wang, H., Yang, G.-H.: ‘Fault estimations for linear systems with polytopic uncertainties’, Int. J. Syst. Control Commun., 2008, 1, (1), pp. 5371.
    16. 16)
      • 6. Persis, C.D., Isidori, A.: ‘A geometric approach to nonlinear fault detection and isolation’, IEEE Trans. Autom. Control, 2001, 46, (6), pp. 853865.
    17. 17)
      • 4. Wang, H., Yang, G.-H.: ‘A finite frequency domain approach to fault detection for linear discrete-time systems’, Int. J. Control, 2008, 81, (7), pp. 11621171.
    18. 18)
      • 25. Ding, D., Yang, G.-H.: ‘Fuzzy filter design for nonlinear systems in finite-frequency domain’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 935945.
    19. 19)
      • 23. Zhang, D., Shi, P., Wang, Q.-G., et al: ‘Distributed non-fragile filtering for T–S fuzzy systems with event-based communications’, Fuzzy Sets Syst., doi:10.1016/j.fss.2016.02.009.
    20. 20)
      • 16. Fang, C.-H., Liu, Y.-S., Kau, S.-W., et al: ‘A new LMI-based approach to relaxed quadratic stabilization of T–S fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (3), pp. 386397.
    21. 21)
      • 12. Tanaka, K., Sugeno, M.: ‘Stability analysis and design of fuzzy systems’, Fuzzy Sets Syst., 1992, 45, pp. 135156.
    22. 22)
      • 8. Zhang, X., Polycarpou, M.M., Parisini, T.: ‘Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation’, Automatica, 2010, 46, (2), pp. 290299.
    23. 23)
      • 18. Xie, X., Yue, D., Zhang, H., et al: ‘Control synthesis of discrete-time T–S fuzzy systems: reducing the conservatism whilst alleviating the computational burden’, IEEE Trans. Cybern., 2016, DOI (identifier) 10.1109/TCYB.2016.2582747.
    24. 24)
      • 34. Zhou, S., Lam, J., Xue, A.: ‘H filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach’, Fuzzy Sets Syst., 2007, 158, pp. 180193.
    25. 25)
      • 28. Yang, G.-H., Wang, H.: ‘Fault detection and isolation for a class of uncertain state-feedback fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2015, 23, (1), pp. 139151.
    26. 26)
      • 13. Johansson, M., Rantzer, A., Arzen, K.: ‘Piecewise quadratic stability of fuzzy systems’, IEEE Trans. Fuzzy Syst., 1999, 7, (6), pp. 713722.
    27. 27)
      • 15. Qiu, J., Feng, G., Gao, H.: ‘Static-output-feedback H control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov functions’, IEEE Trans. Fuzzy Syst., 2013, 21, (2), pp. 245261.
    28. 28)
      • 27. Li, X.-J., Yang, G.-H.: ‘Fault detection for T–S fuzzy systems with unknown membership functions’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 139152.
    29. 29)
      • 1. Chen, J., Patton, R.: ‘Robust model-based fault diagnosis for dynamic systems’ (Kluwer Academic Publishers, Dordrecht, 1998).
    30. 30)
      • 26. Nguang, S.K., Shi, P., Ding, S.: ‘Fault detection for uncertain fuzzy systems: an LMI approach’, IEEE Trans. Fuzzy Syst., 2007, 15, (6), pp. 12511262.
    31. 31)
      • 17. Oliveira, R.C.L.F., Peres, P.L.D.: ‘Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter dependent solutions via LMI relaxations’, IEEE Trans. Autom. Control, 2007, 52, (7), pp. 13341340.
    32. 32)
      • 5. Iwasaki, T., Hara, S.: ‘Generalized KYP lemma: unified frequency domain inequalities with design applications’, IEEE Trans. Autom. Control, 2005, 50, (1), pp. 4159.
    33. 33)
      • 31. Zhang, K., Jiang, B., Shi, P., et al: ‘Analysis and design of robust H fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems’, IEEE Trans. Cybern., 2015, 45, (7), pp. 12251235.
    34. 34)
      • 22. Zhang, D., Cai, W., Xie, L., et al: ‘Nonfragile Distributed Filtering for T–S Fuzzy systems in sensor networks’, IEEE Trans. Fuzzy Syst., 2015, 23, (5), pp. 18831890.
    35. 35)
      • 21. Wang, H.O., Tanaka, K., Griffin, M.F.: ‘An approach to fuzzy control of nonlinear systems: Stability and design issues’, IEEE Trans. Fuzzy Syst., 1996, 4, (1), pp. 1423.
    36. 36)
      • 37. Tanaka, K., Ikeda, T., Wang, H.O.: ‘Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H control theory’, and linear matrix inequalities', IEEE Trans. Fuzzy Syst., 1996, 4, (1), pp. 113.
    37. 37)
      • 10. Wu, Y., Su, H., Lu, R., et al: ‘Passivity based non-fragile control for uncertain Markov jump systems with aperiodic sampling’, Syst. Control Lett., 2015, 85, pp. 3543.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0318
Loading

Related content

content/journals/10.1049/iet-cta.2016.0318
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address