access icon free Anti-windup for a class of partially linearisable non-linear systems with application to wave energy converter control

This paper studies the anti-windup (AW) problem for a certain class of non-linear systems, in which the plant is globally quadratically stable and also partially linearisable by a suitably chosen non-linear feedback control law. Three types of AW compensators are proposed for this type of non-linear system: the first one is a non-linear extension of the popular linear internal model control (IMC) scheme; the second one has a similar structure to the IMC AW compensator yet is of reduced order and has entirely linear dynamics; and the third one is again a linear AW compensator, but can endow the closed-loop system with some sub-optimal performance properties. All three AW compensators are able to provide global exponential stability guarantees for the aforementioned class of systems. This work was inspired by a wave energy application whose dynamics fall into the class of systems studied in this study. Simulation results show the efficacy of the three AW compensators when applied to the wave energy application.

Inspec keywords: reduced order systems; nonlinear control systems; asymptotic stability; power system stability; feedback; linear systems; compensation; closed loop systems

Other keywords: global quadratic stability; IMC AW compensator; global exponential stability; nonlinear feedback control law; anti-windup; sub-optimal performance properties; linear AW compensator; linear internal model control; wave energy converter control; linear IMC; closed-loop system; partially linearisable nonlinear systems

Subjects: Nonlinear control systems; Control of electric power systems; Power system control; Tidal and flow energy; Stability in control theory; Wave power; Linear control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 31. Turner, M.C., Herrmann, G., Postlethwaite, I.: ‘Incorporating robustness requirements into antiwindup design’, IEEE Trans. Autom. Control, 2007, 52, (10), pp. 18421855.
    2. 2)
      • 8. Grimm, G., Hatfield, J., Postlethwaite, I., et al: ‘Anti-windup for stable linear systems with input saturation: an LMI based synthesis’, IEEE Trans. Autom. Control, 2003, 48, (9), pp. 15091525.
    3. 3)
      • 11. Kerr, M., Villota, E., Jayasuriya, S.: ‘Robust anti-windup design for input constrained SISO systems’. Eighth Int. Symp. on QFT and Robust Frequency Domain Methods, 2008.
    4. 4)
      • 1. Tarbouriech, S., Turner, M.C.: ‘Anti-windup design: an overview of some recent advances and some open problems’, IET Control Theory Appl., 2009, 3, (1), pp. 119.
    5. 5)
      • 32. Grimm, G., Postlethwaite, I., Teel, A.R., et al: ‘Case studies using linear matrix inequalities for optimal anti-windup synthesis’, Eur. J. Control, 2003, 9, (5), pp. 463473.
    6. 6)
      • 30. Lekka, A., Turner, M.C., Ringwood, J.V.: ‘A class of globally stabilising controllers for the control of wave energy devices for potable water production’. IEEE Int. Conf. on Control Applications, Dubrovnik, 2012.
    7. 7)
      • 34. Gomes da Silva, J.M.Jr., Tarbouriech, S.: ‘Antiwindup design with guaranteed regions of stability: an LMI-based approach’, IEEE Trans. Autom. Control, 2005, 1, (50), pp. 106111.
    8. 8)
      • 5. Zaccarian, L., Teel, A.R.: ‘Modern anti-windup synthesis: control augmentation for actuator saturation’ (Princeton University Press, New Jersey, 2011).
    9. 9)
      • 10. Wu, W., Jayasuriya, S.: ‘A new QFT design methodology for feedback systems under input saturation’, J. Dyn. Syst. Meas. Contol, 2001, 123, pp. 22523.
    10. 10)
      • 24. Herrmann, G., Menon, P.P., Turner, M.C., et al: ‘Anti-windup synthesis for nonlinear dynamic inversion control schemes’, Int. J. Robust Nonlinear Control, 2010, 20, (13), pp. 14651482.
    11. 11)
      • 35. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, London, 2002, 3rd edn.).
    12. 12)
      • 23. Herrmann, G., Turner, M.C., Menon, P.P., et al: ‘Anti-windup synthesis for nonlinear dynamic inversion controllers’. IFAC Robust Controller Design Symp. (ROCOND), Toulouse, 2006.
    13. 13)
      • 20. Gomes da Silva, J.M.Jr., Turner, M.C.: ‘Static anti-windup for systems with sector-bounded nonlinearities’. American Control Conf., Montreal, 2012.
    14. 14)
      • 26. Weston, P.F., Postlethwaite, I.: ‘Linear conditioning for systems containing saturating actuators’, Automatica, 2000, 36, (9), pp. 13471354.
    15. 15)
      • 37. Abraham, E., Kerrigan, E.: ‘Optimal active control of a wave energy converter’. IEEE 51st Annual Conf. on Decision and Control, Grand Wailea, Maui, Hawaii, 2012.
    16. 16)
      • 9. Saeki, M., Wada, N.: ‘Synthesis of a static anti-windup compensator via linear matrix inequalities’, Int. J. Robust Nonlinear Control, 2002, 12, (10), pp. 927953.
    17. 17)
      • 27. Nolan, G.A., Ringwood, J.V.: ‘Control of a heaving Buoy wave energy converter for potable water production’. Irish Signal and Systems Conf., Dublin, 2006.
    18. 18)
      • 6. Tarbouriech, S., Garcia, G., Gomes da Silva, J.M.Jr., et al: ‘Stability and stabilization of linear systems with saturating actuators’ (Springer Verlag, 2011).
    19. 19)
      • 18. Oliveira, M.Z., Gomes da Silva, J.M.Jr., Coutinho, D.F., et al: ‘Anti-windup design for a class of nonlinear control systems’. IFAC World Congress, Milan, 2011.
    20. 20)
      • 4. Hippe, P.: ‘Windup in control. Its effects and their prevention’ (AIC, Springer, Germany, 2006).
    21. 21)
      • 12. Kerr, M., Turner, M.C., Villota, E., et al: ‘A robust anti-windup design procedure for SISO systems’, Int. J. Control, 2011, 84, (2), pp. 351369.
    22. 22)
      • 36. Li, G., Weiss, G., Mueller, M., et al: ‘Wave energy converter control by wave prediction and dynamic programming’, Renew. Energy, 2012, 48, (0), pp. 392403.
    23. 23)
      • 2. Galeani, S., Tarbouriech, S., Turner, M.C., et al: ‘A tutorial on modern anti-windup design’, Eur. J. Control, 2009, 15, (3–4), pp. 418440.
    24. 24)
      • 13. Morabito, F., Teel, A.R., Zaccarian, L.: ‘Nonlinear antiwindup applied to Euler–Langrange systems’, IEEE Trans. Robot. Autom., 2004, 20, (3), pp. 526537.
    25. 25)
      • 38. Pierson, W.J. Jr., Moskowitz, L.: ‘A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii’, J. Geophys. Res., 1964, 69, (24), pp. 51815190.
    26. 26)
      • 33. Balas, G., Chiang, R., Packard, A., et al: ‘Robust Control Toolbox 3 – User's Guide’.
    27. 27)
      • 3. Glattfelder, A.H., Schaufelberger, W.: ‘Control systems with input and output constraints’ (Springer-Verlag, London, 2003).
    28. 28)
      • 17. Coutinho, D.F., Bazanella, A.S., Trofino, A., et al: ‘Stability analysis and control of a class of differential-algebraic nonlinear systems’, Int. J. Robust Nonlinear Control, 2004, 14, (16), pp. 13011326.
    29. 29)
      • 22. Kapoor, N., Daoutidis, P.: ‘An observer based anti-windup scheme for nonlinear systems with input constraints’, Int. J. Control, 1999, 72, (1), pp. 1829.
    30. 30)
      • 14. Teel, A.R., Kapoor, N.: ‘The L2 anti-windup problem: its definition and solution’. European Control Conf., 1997.
    31. 31)
      • 7. Mulder, E.F., Kothare, M.V., Morari, M.: ‘Multivariable anti-windup controller synthesis using linear matrix inequalities’, Automatica, 2001, 37, pp. 14071416.
    32. 32)
      • 15. Kahveci, N.E., Ioannou, P.A., Mirmirani, M.D.: ‘Adaptive LQ control with anti-windup augmentation to optimize UAV performance in autonomous soaring applications’, IEEE Trans. Control Syst. Technol., 2008, 16, (4), pp. 691707.
    33. 33)
      • 16. Sofrony, J., Turner, M.C., Postlethwaite, I.: ‘Anti-windup using Riccati equations for systems with rate-limits’, Int. J. Control, 2010, 83, (2), pp. 233245.
    34. 34)
      • 21. Doyle, F.J. III: ‘An anti-windup input-output linearisation scheme for SISO systems’, J. Process Control, 1999, 9, (3), pp. 213220.
    35. 35)
      • 28. Nolan, G.A. (2006). ‘Modelling and optimisation of a heaving Buoy wave energy converter for potable water production’. PhD thesis, National University of Ireland, Maynooth.
    36. 36)
      • 19. Gomes da Silva, J.M.Jr., Corso, J., Castelan, E.B.: ‘Output feedback stabilization for systems presenting sector-bounded nonlinearities and saturating inputs’. IFAC World Congress, Seoul, 2008.
    37. 37)
      • 25. Valmorbida, G., Tarbouriech, S., Turner, M.C., et al: ‘Anti-windup for NDI quadratic systems’. Nonlinear Control Design Symp. (NOLCOS), Milan, 2011.
    38. 38)
      • 29. Lekka, A., Turner, M.C., Menon, P.P.: ‘Full and reduced order IMC anti-windup compensators for a class of nonlinear systems with application to wave energy converter control’. American Control Conf., Washington DC, 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0296
Loading

Related content

content/journals/10.1049/iet-cta.2016.0296
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading