Anti-windup for a class of partially linearisable non-linear systems with application to wave energy converter control

Anti-windup for a class of partially linearisable non-linear systems with application to wave energy converter control

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper studies the anti-windup (AW) problem for a certain class of non-linear systems, in which the plant is globally quadratically stable and also partially linearisable by a suitably chosen non-linear feedback control law. Three types of AW compensators are proposed for this type of non-linear system: the first one is a non-linear extension of the popular linear internal model control (IMC) scheme; the second one has a similar structure to the IMC AW compensator yet is of reduced order and has entirely linear dynamics; and the third one is again a linear AW compensator, but can endow the closed-loop system with some sub-optimal performance properties. All three AW compensators are able to provide global exponential stability guarantees for the aforementioned class of systems. This work was inspired by a wave energy application whose dynamics fall into the class of systems studied in this study. Simulation results show the efficacy of the three AW compensators when applied to the wave energy application.


    1. 1)
      • 1. Tarbouriech, S., Turner, M.C.: ‘Anti-windup design: an overview of some recent advances and some open problems’, IET Control Theory Appl., 2009, 3, (1), pp. 119.
    2. 2)
      • 2. Galeani, S., Tarbouriech, S., Turner, M.C., et al: ‘A tutorial on modern anti-windup design’, Eur. J. Control, 2009, 15, (3–4), pp. 418440.
    3. 3)
      • 3. Glattfelder, A.H., Schaufelberger, W.: ‘Control systems with input and output constraints’ (Springer-Verlag, London, 2003).
    4. 4)
      • 4. Hippe, P.: ‘Windup in control. Its effects and their prevention’ (AIC, Springer, Germany, 2006).
    5. 5)
      • 5. Zaccarian, L., Teel, A.R.: ‘Modern anti-windup synthesis: control augmentation for actuator saturation’ (Princeton University Press, New Jersey, 2011).
    6. 6)
      • 6. Tarbouriech, S., Garcia, G., Gomes da Silva, J.M.Jr., et al: ‘Stability and stabilization of linear systems with saturating actuators’ (Springer Verlag, 2011).
    7. 7)
      • 7. Mulder, E.F., Kothare, M.V., Morari, M.: ‘Multivariable anti-windup controller synthesis using linear matrix inequalities’, Automatica, 2001, 37, pp. 14071416.
    8. 8)
      • 8. Grimm, G., Hatfield, J., Postlethwaite, I., et al: ‘Anti-windup for stable linear systems with input saturation: an LMI based synthesis’, IEEE Trans. Autom. Control, 2003, 48, (9), pp. 15091525.
    9. 9)
      • 9. Saeki, M., Wada, N.: ‘Synthesis of a static anti-windup compensator via linear matrix inequalities’, Int. J. Robust Nonlinear Control, 2002, 12, (10), pp. 927953.
    10. 10)
      • 10. Wu, W., Jayasuriya, S.: ‘A new QFT design methodology for feedback systems under input saturation’, J. Dyn. Syst. Meas. Contol, 2001, 123, pp. 22523.
    11. 11)
      • 11. Kerr, M., Villota, E., Jayasuriya, S.: ‘Robust anti-windup design for input constrained SISO systems’. Eighth Int. Symp. on QFT and Robust Frequency Domain Methods, 2008.
    12. 12)
      • 12. Kerr, M., Turner, M.C., Villota, E., et al: ‘A robust anti-windup design procedure for SISO systems’, Int. J. Control, 2011, 84, (2), pp. 351369.
    13. 13)
      • 13. Morabito, F., Teel, A.R., Zaccarian, L.: ‘Nonlinear antiwindup applied to Euler–Langrange systems’, IEEE Trans. Robot. Autom., 2004, 20, (3), pp. 526537.
    14. 14)
      • 14. Teel, A.R., Kapoor, N.: ‘The L2 anti-windup problem: its definition and solution’. European Control Conf., 1997.
    15. 15)
      • 15. Kahveci, N.E., Ioannou, P.A., Mirmirani, M.D.: ‘Adaptive LQ control with anti-windup augmentation to optimize UAV performance in autonomous soaring applications’, IEEE Trans. Control Syst. Technol., 2008, 16, (4), pp. 691707.
    16. 16)
      • 16. Sofrony, J., Turner, M.C., Postlethwaite, I.: ‘Anti-windup using Riccati equations for systems with rate-limits’, Int. J. Control, 2010, 83, (2), pp. 233245.
    17. 17)
      • 17. Coutinho, D.F., Bazanella, A.S., Trofino, A., et al: ‘Stability analysis and control of a class of differential-algebraic nonlinear systems’, Int. J. Robust Nonlinear Control, 2004, 14, (16), pp. 13011326.
    18. 18)
      • 18. Oliveira, M.Z., Gomes da Silva, J.M.Jr., Coutinho, D.F., et al: ‘Anti-windup design for a class of nonlinear control systems’. IFAC World Congress, Milan, 2011.
    19. 19)
      • 19. Gomes da Silva, J.M.Jr., Corso, J., Castelan, E.B.: ‘Output feedback stabilization for systems presenting sector-bounded nonlinearities and saturating inputs’. IFAC World Congress, Seoul, 2008.
    20. 20)
      • 20. Gomes da Silva, J.M.Jr., Turner, M.C.: ‘Static anti-windup for systems with sector-bounded nonlinearities’. American Control Conf., Montreal, 2012.
    21. 21)
      • 21. Doyle, F.J. III: ‘An anti-windup input-output linearisation scheme for SISO systems’, J. Process Control, 1999, 9, (3), pp. 213220.
    22. 22)
      • 22. Kapoor, N., Daoutidis, P.: ‘An observer based anti-windup scheme for nonlinear systems with input constraints’, Int. J. Control, 1999, 72, (1), pp. 1829.
    23. 23)
      • 23. Herrmann, G., Turner, M.C., Menon, P.P., et al: ‘Anti-windup synthesis for nonlinear dynamic inversion controllers’. IFAC Robust Controller Design Symp. (ROCOND), Toulouse, 2006.
    24. 24)
      • 24. Herrmann, G., Menon, P.P., Turner, M.C., et al: ‘Anti-windup synthesis for nonlinear dynamic inversion control schemes’, Int. J. Robust Nonlinear Control, 2010, 20, (13), pp. 14651482.
    25. 25)
      • 25. Valmorbida, G., Tarbouriech, S., Turner, M.C., et al: ‘Anti-windup for NDI quadratic systems’. Nonlinear Control Design Symp. (NOLCOS), Milan, 2011.
    26. 26)
      • 26. Weston, P.F., Postlethwaite, I.: ‘Linear conditioning for systems containing saturating actuators’, Automatica, 2000, 36, (9), pp. 13471354.
    27. 27)
      • 27. Nolan, G.A., Ringwood, J.V.: ‘Control of a heaving Buoy wave energy converter for potable water production’. Irish Signal and Systems Conf., Dublin, 2006.
    28. 28)
      • 28. Nolan, G.A. (2006). ‘Modelling and optimisation of a heaving Buoy wave energy converter for potable water production’. PhD thesis, National University of Ireland, Maynooth.
    29. 29)
      • 29. Lekka, A., Turner, M.C., Menon, P.P.: ‘Full and reduced order IMC anti-windup compensators for a class of nonlinear systems with application to wave energy converter control’. American Control Conf., Washington DC, 2013.
    30. 30)
      • 30. Lekka, A., Turner, M.C., Ringwood, J.V.: ‘A class of globally stabilising controllers for the control of wave energy devices for potable water production’. IEEE Int. Conf. on Control Applications, Dubrovnik, 2012.
    31. 31)
      • 31. Turner, M.C., Herrmann, G., Postlethwaite, I.: ‘Incorporating robustness requirements into antiwindup design’, IEEE Trans. Autom. Control, 2007, 52, (10), pp. 18421855.
    32. 32)
      • 32. Grimm, G., Postlethwaite, I., Teel, A.R., et al: ‘Case studies using linear matrix inequalities for optimal anti-windup synthesis’, Eur. J. Control, 2003, 9, (5), pp. 463473.
    33. 33)
      • 33. Balas, G., Chiang, R., Packard, A., et al: ‘Robust Control Toolbox 3 – User's Guide’.
    34. 34)
      • 34. Gomes da Silva, J.M.Jr., Tarbouriech, S.: ‘Antiwindup design with guaranteed regions of stability: an LMI-based approach’, IEEE Trans. Autom. Control, 2005, 1, (50), pp. 106111.
    35. 35)
      • 35. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, London, 2002, 3rd edn.).
    36. 36)
      • 36. Li, G., Weiss, G., Mueller, M., et al: ‘Wave energy converter control by wave prediction and dynamic programming’, Renew. Energy, 2012, 48, (0), pp. 392403.
    37. 37)
      • 37. Abraham, E., Kerrigan, E.: ‘Optimal active control of a wave energy converter’. IEEE 51st Annual Conf. on Decision and Control, Grand Wailea, Maui, Hawaii, 2012.
    38. 38)
      • 38. Pierson, W.J. Jr., Moskowitz, L.: ‘A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii’, J. Geophys. Res., 1964, 69, (24), pp. 51815190.

Related content

This is a required field
Please enter a valid email address