Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fault-tolerant control for linear systems with multiple faults and disturbances based on augmented intermediate estimator

This study investigates the observer-based fault-tolerant control (FTC) problem for linear systems with multiple faults and external disturbances. Two novel types of FTC schemes are proposed, namely, the intermediate estimator-based parameter adjustment (IEBPA) FTC scheme, which deals with linear systems with matched disturbances and the intermediate estimator-based (IEB) H FTC scheme, which is applicable to linear systems with mismatched disturbances. For the case with matched disturbances, it is shown that the IEBPA FTC scheme ensures the states of the closed-loop system to be uniformly ultimately bounded with an explicit bound. For the case with mismatched disturbances, it is proved that the IEB H FTC scheme guarantees the closed-loop to be robustly stable with a prescribed H performance index. A simulation example is given to illustrate the effectiveness of the proposed methods.

References

    1. 1)
      • 10. Gao, Z., Ho, D.W.: ‘State/noise estimator for descriptor systems with application to sensor fault diagnosis’, IEEE Trans. Signal Process., 2006, 54, (4), pp. 13161326.
    2. 2)
      • 35. Corless, M., Tu, J.: ‘State and input estimation for a class of uncertain systems’, Automatica, 1998, 34, (6), pp. 757764.
    3. 3)
      • 11. Gao, Z., Wang, H.: ‘Descriptor observer approaches for multivariable systems with measurement noises and application in fault detection and diagnosis’, Syst. Control Lett., 2006, 55, (4), pp. 304313.
    4. 4)
      • 28. Li, H., Gao, H., Shi, P., et al: ‘Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach’, Automatica, 2014, 50, (7), pp. 18251834.
    5. 5)
      • 23. Ríos, H., Kamal, S., Fridman, L.M., et al: ‘Fault tolerant control allocation via continuous integral sliding-modes: a HOSM-observer approach’, Automatica, 2015, 51, pp. 318325.
    6. 6)
      • 9. Zhang, J., Swain, A.K., Nguang, S.K.: ‘Simultaneous robust actuator and sensor fault estimation for uncertain non-linear Lipschitz systems’, IET Control Theor. Appl., 2014, 8, (14), pp. 13641374.
    7. 7)
      • 30. Gao, Z, Breikin, T, Wang, H.: ‘High-gain estimator and fault-tolerant design with application to a gas turbine dynamic system’, IEEE Trans. Control Syst. Technol., 2007, 15, (4), pp. 740753.
    8. 8)
      • 14. Du, M., Scott, J., Mhaskar, P.: ‘Actuator and sensor fault isolation of nonlinear process systems’, Chem. Eng. Sci., 2013, 104, pp. 294303.
    9. 9)
      • 1. Hwang, I., Kim, S., Kim, Y., et al: ‘A survey of fault detection, isolation, and reconfiguration methods’, IEEE Trans. Control Syst. Technol., 2010, 18, (3), pp. 636653.
    10. 10)
      • 2. Jin, X.Z., Yang, G.H., Che, W.W.: ‘Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (9), pp. 13451355.
    11. 11)
      • 26. Liu, M., Shi, P., Zhang, L., et al: ‘Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, (11), pp. 27552764.
    12. 12)
      • 32. Zhu, J.W., Yang, G.H.: ‘Fault accommodation for linear systems with time-varying delay’, Int. J. Syst. Sci., 2016, 48, (2), pp.316323.
    13. 13)
      • 17. Tan, C.P., Edwards, C.: ‘Sliding mode observers for robust detection and reconstruction of actuator and sensor faults’, Int. J. Robust Nonlin. Control, 2003, 13, (5), pp. 443463.
    14. 14)
      • 22. Gao, Z., Ding, S.X.: ‘Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems’, Automatica, 2007, 43, (5), pp. 912920.
    15. 15)
      • 36. Li, X.J., Yang, G.H.: ‘Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures’, IET Control Theor. Appl., 2012, 6, (10), pp. 15441551.
    16. 16)
      • 27. Lee, D.J., Park, Y., Park, Y.: ‘Robust H sliding mode descriptor observer for fault and output disturbance estimation of uncertain systems’, IEEE Trans. Autom. Control, 2012, 57, (11), pp. 29282934.
    17. 17)
      • 19. Liu, M., Cao, X., Shi, P.: ‘Fault estimation and tolerant control for fuzzy stochastic systems’, IEEE Trans. Fuzzy Syst., 2013, 21, (2), pp. 221229.
    18. 18)
      • 21. Gao, Z., Ding, S.X., Cecati, C.: ‘Real-time fault diagnosis and fault-tolerant control’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 37523756.
    19. 19)
      • 4. Tong, S., Huo, B., Li, Y.: ‘Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 115.
    20. 20)
      • 15. Du, M., Mhaskar, P.: ‘Isolation and handling of sensor faults in nonlinear systems’, Automatica, 2014, 50, (4), pp. 10661074.
    21. 21)
      • 18. Tan, C.P., Edwards, C.: ‘Robust fault reconstruction in uncertain linear systems using multiple sliding mode observers in cascade’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 855867.
    22. 22)
      • 3. Li, X.J., Yang, G.H.: ‘Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures’, IET Control Theor. Appl., 2012, 6, (10), pp. 15441551.
    23. 23)
      • 25. Liu, M., Shi, P.: ‘Sensor fault estimation and tolerant control for Itô stochastic systems with a descriptor sliding mode approach’, Automatica, 2013, 49, (5), pp. 12421250.
    24. 24)
      • 12. Jiang, B., Staroswiecki, M., Cocquempot, V.: ‘Fault accommodation for nonlinear dynamic systems’, IEEE Trans. Autom. Control, 2006, 51, (9), pp. 15781583.
    25. 25)
      • 16. Edwards, C., Spurgeon, S.K., Patton, R.J.: ‘Sliding mode observers for fault detection and isolation’, Automatica, 2000, 36, (4), pp. 541553.
    26. 26)
      • 33. Ginoya, D., Shendge, P.D., Phadke, S.B.: ‘Sliding mode control for mismatched uncertain systems using an extended disturbance observer’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 19831992.
    27. 27)
      • 34. Shi, P., Liu, M., Zhang, L.: ‘Fault-tolerant sliding mode observer synthesis of Markovian jump systems using quantized measurements’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 59105918.
    28. 28)
      • 31. Zhu, J.W., Yang, G.H., Wang, H., et al: ‘Fault estimation for a class of nonlinear systems based on intermediate estimator’, IEEE Trans. Autom. Control, 2015, 61, (9), pp.25182524.
    29. 29)
      • 5. Wang, W., Wen, C.: ‘Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance’, Automatica, 2010, 46, (12), pp. 20822091.
    30. 30)
      • 6. Wang, W., Wen, C.: ‘Adaptive compensation for infinite number of actuator failures or faults’, Automatica, 2011, 47, (10), pp. 21972210.
    31. 31)
      • 20. Liu, M., Zhang, L., Shi, P., et al: ‘Robust control of stochastic systems against bounded disturbances with application to flight control’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 15041515.
    32. 32)
      • 8. Tabatabaeipour, S.M., Bak, T.: ‘Robust observer-based fault estimation and accommodation of discrete-time piecewise linear systems’, J. Frank. Inst., 2014, 351, (1), pp. 277295.
    33. 33)
      • 7. Huang, S.J., Yang, G.H.: ‘Fault tolerant controller design for T-S fuzzy systems with time-varying delay and actuator faults: a k-step fault-estimation approach’, IEEE Trans. Fuzzy Syst., 2014, 22, (6), pp. 15261540.
    34. 34)
      • 13. Zhang, K, Jiang, B, Shi, P.: ‘Fast fault estimation and accommodation for dynamical systems’, IET Control Theor. Appl., 2009, 3, (2), pp. 189199.
    35. 35)
      • 29. Gao, Z., Ding, S.X.: ‘Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral and derivative observer design’, IET Control Theor. Appl., 2007, 1, (5), pp. 12081218.
    36. 36)
      • 24. Yang, G.H., Ye, D.: ‘Reliable control of linear systems with adaptive mechanism’, IEEE Trans. Autom. Control, 2010, 55, (1), pp. 242247.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0267
Loading

Related content

content/journals/10.1049/iet-cta.2016.0267
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address