Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Performance analysis of the generalised projection identification for time-varying systems

Performance analysis of the generalised projection identification for time-varying systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The least mean square methods include two typical parameter estimation algorithms, which are the projection algorithm and the stochastic gradient algorithm, the former is sensitive to noise and the latter is not capable of tracking the time-varying parameters. On the basis of these two typical algorithms, this study presents a generalised projection identification algorithm (or a finite data window stochastic gradient identification algorithm) for time-varying systems and studies its convergence by using the stochastic process theory. The analysis indicates that the generalised projection algorithm can track the time-varying parameters and requires less computational effort compared with the forgetting factor recursive least squares algorithm. The way of choosing the data window length is stated so that the minimum parameter estimation error upper bound can be obtained. The numerical examples are provided.

References

    1. 1)
      • 21. Guo, L., Ljung, L., Priouret, P.: ‘Performance analysis of the forgetting factor RLS algorithm’, Int. J. Adapt. Control Signal Process., 1993, 7, (6), pp. 525527.
    2. 2)
      • 25. Ding, F.: ‘System identification — performances analysis for identification methods’ (Science Press, Beijing, 2014).
    3. 3)
      • 19. Ljung, L., Priouret, P.: ‘A result on the mean square error obtained using general tracking algorithms’, Int. J. Adapt. Control Signal Process., 1991, 5, (4), pp. 231250.
    4. 4)
      • 4. Zhao, S., Shmaliy, Y.S., Liu, F.: ‘Fast Kalman-like optimal unbiased FIR filtering with applications’, IEEE Trans. Signal Process., 2016, 64, (9), pp. 22842297.
    5. 5)
      • 7. Shi, Y., Fang, H.: ‘Kalman filter based identification for systems with randomly missing measurements in a network environment’, Int. J. Control, 2010, 83, (3), pp. 538551.
    6. 6)
      • 11. Vörös, J.: ‘Modeling and parameter identification of systems with multi-segment piecewise-linear characteristics’, IEEE Trans. Autom. Control, 2002, 47, (1), pp. 184188.
    7. 7)
      • 29. Wu, L., Su, X., Shi, P., et al: ‘Model approximation for discrete-time state-delay systems in the T–S fuzzy framework’, IEEE Trans. Fuzzy Syst., 2011, 19, (2), pp. 366378.
    8. 8)
      • 13. Ljung, L.: ‘System identification: theory for the user’ (Prentice-Hall, Englewood Cliffs, NJ, 1999, 2nd edn.).
    9. 9)
      • 24. Ding, F., Chen, T.: ‘Performance analysis of multi-innovation gradient type identification methods’, Automatica, 2007, 43, (1), pp. 114.
    10. 10)
      • 14. Ding, F., Chen, T.: ‘Performance bounds of the forgetting factor least squares algorithm for time-varying systems with finite measurement data’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2005, 52, (3), pp. 555566.
    11. 11)
      • 8. Li, H., Shi, Y.: ‘Robust H-infinity filtering for nonlinear stochastic systems with uncertainties and random delays modeled by Markov chains’, Automatica, 2012, 48, (1), pp. 159166.
    12. 12)
      • 30. Wu, L., Su, X., Shi, P., et al: ‘A new approach to stability analysis and stabilization of discrete-time T–S fuzzy time-varying delay systems’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (1), pp. 273286.
    13. 13)
      • 39. Pan, J., Yang, X.H., Cai, H.F., et al: ‘Image noise smoothing using a modified Kalman filter’, Neurocomputing, 2016, 173, pp. 16251629.
    14. 14)
      • 22. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering prediction and control’ (Prentice-Hall, Englewood Cliffs, NJ, 1984).
    15. 15)
      • 16. Lozano, L.R.: ‘Convergence analysis of recursive identification algorithms with forgetting factor’, Automatica, 1983, 19, (1), pp. 9597.
    16. 16)
      • 3. Zhao, S., Huang, B., Liu, F.: ‘Linear optimal unbiased filter for time-variant systems without apriori information on initial condition’, IEEE Trans. Autom. Control, 2016, doi: 10.1109/TAC.2016.2557999.
    17. 17)
      • 20. Ljung, L., Priouret, P.: ‘Remarks on the mean square tracking error’, Int. J. Adapt. Control Signal Process., 1991, 5, (6), pp. 395403.
    18. 18)
      • 18. Bittanti, S., Bolzern, P., Campi, M.: ‘Convergence and exponential convergence of identification algorithms with directional forgetting factor’, Automatica, 1990, 26, (5), pp. 929932.
    19. 19)
      • 31. Wang, Y.J., Ding, F.: ‘Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model’, Automatica, 2016, 71, pp. 308313.
    20. 20)
      • 2. Li, H., Shi, Y., Yan, W.: ‘Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ-gain stability’, Automatica, 2016, 68, pp. 148154.
    21. 21)
      • 9. Shi, Y., Yu, B.: ‘Robust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication links’, Automatica, 2011, 47, (4), pp. 754760.
    22. 22)
      • 26. Guo, L.: ‘Time-varying stochastic systems – stability’, estimation and control' (Jilin Science and Technology Press, Changchun, China, 1993).
    23. 23)
      • 28. Su, X., Shi, P., Wu, L., et al: ‘A novel approach to filter design for T–S fuzzy discrete-time systems with time-varying delay’, IEEE Trans. Fuzzy Syst., 2012, 20, (6), pp. 11141129.
    24. 24)
      • 36. Ding, F., Wang, X.H., Chen, Q.J., et al: ‘Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition’, Circuits Syst. Signal Process., 2016, 35, (9), pp. 33233338.
    25. 25)
      • 10. Vörös, J.: ‘Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities’, IEEE Trans. Autom. Control, 1999, 44, (11), pp. 21452149.
    26. 26)
      • 32. Wang, Y.J., Ding, F.: ‘The filtering based iterative identification for multivariable systems’, IET Control Theory Appl., 2016, 10, (8), pp. 894902.
    27. 27)
      • 5. Wang, T.Z., Wu, H., Ni, M.Q.: ‘et al.: An adaptive confidence limit for periodic non-steady conditions fault detection’, Mechan. Syst. Signal Process., 2016, 72–73, pp. 328345.
    28. 28)
      • 12. Vörös, J.: ‘Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones’, IEEE Trans. Autom. Control, 2003, 48, (12), pp. 22032206.
    29. 29)
      • 38. Mu, H.Q., Yuen, K.V.: ‘Novel outlier-resistant extended Kalman filter for robust online structural identification’, J. Eng. Mechan., 2015, 141, (1), doi: 10.1061/(ASCE)EM.1943-7889.0000810.
    30. 30)
      • 35. Salhi, H., Kamoun, S.: ‘A recursive parametric estimation algorithm of multivariable nonlinear systems described by Hammerstein mathematical models’, Appl. Math. Model., 2015, 39, (16), pp. 49514962.
    31. 31)
      • 37. Yuen, K.V., Kuok, S.C.: ‘Online updating and uncertainty quantification using nonstationary output-only measurement’, Mech. Syst. Signal Process., 2016, 66, pp. 6277.
    32. 32)
      • 23. Ding, F.: ‘The generalized projection algorithm for time-varying systems’. The 32nd Chinese Control Conf. (2013 CCC), Xi'an, China, 26–28 July 2013, pp. 19051910.
    33. 33)
      • 34. Salhi, H., Kamouna, S., Essounboulib, N., et al: ‘Adaptive discrete-time sliding-mode control of nonlinear systems described by Wiener models, Int. J. Control, 2016, 89, (3), pp. 611622.
    34. 34)
      • 17. Canetti, R.M., Espana, M.D.: ‘Convergence analysis of the least-squares identification algorithm with a variable forgetting factor for time-varying linear systems’, Automatica, 1989, 25, (4), pp. 609612.
    35. 35)
      • 33. Wang, Y.J., Ding, F.: ‘The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique’, Signal Process., 2016, 128, pp. 212221.
    36. 36)
      • 1. Li, H., Shi, Y., Yan, W.: ‘On neighbor information utilization in distributed receding horizon control for consensus-seeking’, IEEE Trans. Cybern., 2016, 46, (9), pp. 20192027.
    37. 37)
      • 6. Wang, T.Z., Qi, J., Xu, H.: ‘et al.: Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter’, ISA Trans., 2016, 60, pp. 156163.
    38. 38)
      • 15. Ding, F., Ding, J.: ‘Least squares parameter estimation with irregularly missing data’, Int. J. Adapt. Control Signal Process., 2010, 24, (7), pp. 540553.
    39. 39)
      • 27. Su, X., Wu, L., Shi, P., et al: ‘H-infinity model reduction of T–S fuzzy stochastic systems’, IEEE Trans. Syst. Man Cybern., B, Cybern., 2012, 42, (6), pp. 15731585.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0202
Loading

Related content

content/journals/10.1049/iet-cta.2016.0202
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address