http://iet.metastore.ingenta.com
1887

Stabilisation of non-linear DISS systems with uncertainty via encoded feedback

Stabilisation of non-linear DISS systems with uncertainty via encoded feedback

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The global asymptotic stability of non-linear systems with uncertainty through sampled encoded measurements is investigated. With the objective of achieving global asymptotic stability, some sufficient conditions are derived on sampling time and the quantity of uncertainty under differentiably ISS (DISS) condition, which can be relaxed under input-to-state stability (ISS) condition. Additionally, as a special case, the result when the non-linear system is fixed without uncertainty is improved compared with that in Liberzon and Hespanha, where ISS, a strictly stronger condition than DISS, is employed.

References

    1. 1)
      • 1. De Persis, C., Isidori, A.: ‘Stabilizability by state feedback implies stabilizability by encoded state feedback’, Syst. Control Lett., 2004, 53, (3), pp. 249258.
    2. 2)
      • 2. Brockett, R.W., Liberzon, D.: ‘Quantized feedback stabilization of linear systems’, IEEE Trans. Autom. Control, 2000, 45, (7), pp. 12791289.
    3. 3)
      • 3. De Persis, C.: ‘n-bit stabilization of n-dimensional nonlinear systems in feedforward form’, IEEE Trans. Autom. Control, 2005, 50, (3), pp. 299311.
    4. 4)
      • 4. De Persis, C.: ‘Nonlinear stabilizability via encoded feedback: the case of integral ISS systems’, Automatica, 2006, 42, (10), pp. 18131816.
    5. 5)
      • 5. Elia, N., Mitter, S.K.: ‘Stabilization of linear systems with limited information’, IEEE Trans. Autom. Control, 2001, 46, (9), pp. 13841400.
    6. 6)
      • 6. Fridman, E., Dambrine, M.: ‘Control under quantization, saturation and delay: an LMI approach’, Automatica, 2009, 45, (10), pp. 22582264.
    7. 7)
      • 7. Hayakawa, T., Ishii, H., Tsumura, K.: ‘Adaptive quantized control for nonlinear uncertain systems’, Syst. Control Lett., 2009, 58, (9), pp. 625632.
    8. 8)
      • 8. Kang, X., Ishii, H.: ‘Coarsest quantization for networked control of uncertain linear systems’, Automatica, 2015, 51, pp. 18.
    9. 9)
      • 9. Liberzon, D.: ‘On stabilization of linear systems with limited information’, IEEE Trans. Autom. Control, 2003, 48, (2), pp. 304307.
    10. 10)
      • 10. Liu, K., Fridman, E., Johansson, K.H.: ‘Dynamic quantization of uncertain linear networked control systems’, Automatica, 2015, 59, pp. 248255.
    11. 11)
      • 11. Rasool, F., Nguang, S.K.: ‘Quantised robust H output feedback control of discrete-time systems with random communication delays’, IET Control Theory Appl., 2010, 4, (11), pp. 22522262.
    12. 12)
      • 12. Lai, G., Liu, Z., Zhang, Y., et al: ‘Quantisation-based robust control of uncertain non-strict-feedback nonlinear systems under arbitrary switching’, IET Control Theory Appl., 2016, 10, (5), pp. 582589.
    13. 13)
      • 13. Liberzon, D., Hespanha, J.P.: ‘Stabilization of nonlinear systems with limited information feedback’, IEEE Trans. Autom. Control, 2005, 50, (6), pp. 910915.
    14. 14)
      • 14. Petersen, I.R., Savkin, A.V.: ‘Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel’. Proc. of 40th Conf. on Decision and Control, Orlando, FL, 2001, pp. 304309.
    15. 15)
      • 15. Sharon, Y., Liberzon, D.: ‘Input-to-state stabilization with quantized output feedback’. Proc. of 11th Int. Conf. on Hybrid System: Computation and Control (HSCC), Berlin, Germany, 2008 (LNCS, 4981), pp. 500513.
    16. 16)
      • 16. Sharon, Y., Liberzon, D.: ‘Input-to-state stabilizing controller for systems with coarse quantization’, IEEE Trans. Autom. Control, 2012, 57, (4), pp. 830844.
    17. 17)
      • 17. Vu, L., Liberzon, D.: ‘Supervisory control of uncertain linear time-varying plants’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 2742.
    18. 18)
      • 18. Vu, L., Liberzon, D.: ‘Supervisory control of uncertain systems with quantized information’, Int. J. Adaptive Control Signal Process., 2012, 26, (8), pp. 739756.
    19. 19)
      • 19. Wong, W.S., Brockett, R.W.: ‘Systems with finite communication bandwidth constraints I: state estimation problems’, IEEE Trans. Autom. Control, 1997, 42, (9), pp. 12941299.
    20. 20)
      • 20. Wong, W.S., Brockett, R.W.: ‘Systems with finite communication bandwidth constraints II: stabilization with limited information feedback’, IEEE Trans. Autom. Control, 1999, 44, (5), pp. 10491053.
    21. 21)
      • 21. Zhang, H., Feng, G., Yan, H., et al: ‘Sampled-data control of nonlinear networked systems with time-delay and quantization’, Int. J. Robust Nonlinear Control, 2016, 26, (5), pp. 919933.
    22. 22)
      • 22. Jiang, Z.P., Liu, T.F.: ‘Quantized nonlinear control – a survey’, Acta Automat. Sin., 2013, 39, (11), pp. 18201830.
    23. 23)
      • 23. Nair, G.N., Fagnani, F., Zampieri, S., et al: ‘Feedback control under data rate constraints: an overview’, Proc. IEEE, 2007, 95, (1), pp. 108137.
    24. 24)
      • 24. Li, C., Chen, M.Z.Q.: ‘On stabilizability of nonlinearly parameterized discrete-time systems’, IEEE Trans. Autom. Control, 2014, 59, (11), pp. 30143019.
    25. 25)
      • 25. Li, C., Chen, M.Z.Q.: ‘Simultaneous identification and stabilization of nonlinearly parameterized discrete-time systems by nonlinear least squares’, IEEE Trans. Autom. Control, 2016, 61, (7), pp. 18101823.
    26. 26)
      • 26. Angeli, D., Sontag, E.D., Wang, Y.: ‘A characterization of integral input to state stability’, IEEE Trans. Autom. Control, 2000, 45, (6), pp. 10821097.
    27. 27)
      • 27. Sontag, E.D.: ‘Comments on integral variants of ISS’, Syst. Control Lett., 1998, 34, (1), pp. 93100.
    28. 28)
      • 28. Franci, A., Chaillet, A.: ‘A robust limited-information feedback for a class of uncertain nonlinear systems’. Proc. of 7th Int. Conf. on Informatics in Control, Automation and Robotics, Madeira, Portugal, 2010, pp. 16.
    29. 29)
      • 29. Angeli, D., Sontag, E.D., Wang, Y.: ‘Input-to-state stability with respect to inputs and their derivatives’, Int. J. Robust Nonlinear Control, 2003, 13, (11), pp. 10351056.
    30. 30)
      • 30. Sontag, E.D.: ‘Input to state stability: basic concepts and results’. Proc. of CIME Summer Course on Nonlinear and Optimal Control Theory, 2004, pp. 462488.
    31. 31)
      • 31. Tatikonda, S., Mitter, S.: ‘Control under communication constraints’, IEEE Trans. Autom. Control, 2004, 49, (7), pp. 10561068.
    32. 32)
      • 32. Ingalls, B.: ‘Integral-input-output to state stability’, 2001, arXiv preprint math/0106138.
    33. 33)
      • 33. Liberzon, D., Nesic, D.: ‘Input-to-state stabilization of linear systems with quantized state measurements’, IEEE Trans. Autom. Control, 2007, 52, (5), pp. 767781.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0180
Loading

Related content

content/journals/10.1049/iet-cta.2016.0180
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address