http://iet.metastore.ingenta.com
1887

Event-based security control for discrete-time stochastic systems

Event-based security control for discrete-time stochastic systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the event-based security control problem for a class of discrete-time stochastic systems with multiplicative noises subject to both randomly occurring denial-of-service (DoS) attacks and randomly occurring deception attacks. An event-triggered mechanism is adopted with hope to reduce the communication burden, where the measurement signal is transmitted only when a certain triggering condition is violated. A novel attack model is proposed to reflect the randomly occurring behaviours of the DoS attacks as well as the deception attacks within a unified framework via two sets of Bernoulli distributed white sequences with known conditional probabilities. A new concept of mean-square security domain is put forward to quantify the security degree. The authors aim to design an output feedback controller such that the closed-loop system achieves the desired security. By using the stochastic analysis techniques, some sufficient conditions are established to guarantee the desired security requirement and the control gain is obtained by solving some linear matrix inequalities with non-linear constraints. A simulation example is utilised to illustrate the usefulness of the proposed controller design scheme.

References

    1. 1)
      • 1. Hu, J., Wang, Z., Shen, B., et al: ‘Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements’, Int. J. Control, 2013, 86, (4), pp. 650663.
    2. 2)
      • 2. Hou, T., Zhang, W., Ma, H.: ‘Finite horizon H2/H control for discrete-time stochastic systems with Markovian jumps and multiplicative noise’, IEEE Trans. Autom. Control, 2010, 55, (5), pp. 11851191.
    3. 3)
      • 3. Wen, S., Zeng, Z., Huang, T.: ‘Observer-based H fuzzy control for discrete-time Takagi–Sugeno fuzzy mixed delay systems with random packet losses and multiplicative noises’, Int. J. Syst. Sci., 2015, 46, (1), pp. 159169.
    4. 4)
      • 4. Gershon, E., Shaked, U., Yaesh, I.: ‘H control and filtering of discrete-time stochastic systems with multiplicative noise’, Automatica, 2001, 37, (3), pp. 409417.
    5. 5)
      • 5. Yang, F., Wang, Z., Hung, Y.S.: ‘Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises’, IEEE Transactions on Automatic Control, 2002, 47, (7), pp. 11791183.
    6. 6)
      • 6. Yang, Z., Shi, X., Chen, J.: ‘Optimal coordination of mobile sensors for target tracking under additive and multiplicative noises’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 34593468.
    7. 7)
      • 7. Caballero-Aguila, R., Hermoso-Carazo, A., Jimenez-Lopez, J.D., et al: ‘Signal estimation with multiple delayed sensors using covariance information’, Digit. Signal Process., 2010, 20, (2), pp. 528540.
    8. 8)
      • 8. Ding, D., Wang, Z., Alsaadi, F.E., et al: ‘Receding horizon filtering for a class of discrete time-varying nonlinear systems with multiple missing measurements’, Int. J. General Syst., 2015, 44, (2), pp. 198211.
    9. 9)
      • 9. Ding, D., Wang, Z., Shen, B., et al: ‘Event-triggered distributed H state estimation with packet dropouts through sensor networks’, IET Control Theory Appl., 2015, 9, (13), pp. 19481955.
    10. 10)
      • 10. Dong, H., Wang, Z., Ding, S.X., et al: ‘Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying systems’, Automatica, 2014, 50, (12), pp. 31823189.
    11. 11)
      • 11. Liu, S., Wei, G., Song, Y., et al: ‘Error-constrained reliable tracking control for discrete time-varying systems subject to quantization effects’, Neurocomputing, 2016, 174, pp. 897905.
    12. 12)
      • 12. Chen, B., Zhang, W.-A., Yu, L., et al: ‘Distributed fusion estimation with communication bandwidth constraints’, IEEE Trans. Autom. Control, 2015, 60, (5), pp. 13981403.
    13. 13)
      • 13. Liang, J., Shen, B., Dong, H., et al: ‘Robust distributed state estimation for sensor networks with multiple stochastic communication delays’, Int. J. Syst. Sci., 2011, 42, (9), pp. 14591471.
    14. 14)
      • 14. Seyboth, G.S., Dimarogonas, D.V., Johansson, K.H.: ‘Event-based broadcasting for multi-agent average consensus’, Automatica, 2013, 49, (1), pp. 245252.
    15. 15)
      • 15. Fan, Y., Feng, G., Wang, Y., et al: ‘Distributed event-triggered control of multi-agent systems with combinational measurements’, Automatica, 2013, 49, (2), pp. 671675.
    16. 16)
      • 16. Ding, D., Wang, Z., Shen, B.: ‘Event-triggered consensus control for discrete-time stochastic multi-agent systems: The input-to-state stability in probability’, Automatica, 2015, 62, pp. 284291.
    17. 17)
      • 17. Meng, X., Chen, T.: ‘Event based agreement protocols for multi-agent networks’, Automatica, 2013, 49, (7), pp. 21252132.
    18. 18)
      • 18. Cao, M., Xiao, F., Wang, L.: ‘Second-order leader-following consensus based on time and event hybrid-driven control’, Syst. Control Lett., 2014, 74, pp. 9097.
    19. 19)
      • 19. Donkers, M.C.F., Heemels, W.P.M.H.: ‘Output-based event-triggered control with guaranteed L-gain and improved and decentralized event triggering’, IEEE Trans. Autom. Control, 2012, 57, (6), pp. 13621367.
    20. 20)
      • 20. Tabuada, P.: ‘Event-triggered real-time scheduling of stabilizing control tasks’, IEEE Trans. Autom. Control, 2007, 52, (9), pp. 16801685.
    21. 21)
      • 21. Zhang, J., Feng, G.: ‘Event-driven observer-based output feedback control for linear systems’, Automatica, 2014, 50, (7), pp. 18521859.
    22. 22)
      • 22. Wei, G., Wang, L., Liu, Y.: ‘H control for a class of multi-agent systems via a stochastic sampled-data method’, IET Control Theory Appl., 2015, 9, (14), pp. 20572065.
    23. 23)
      • 23. Li, H., Shi, Y.: ‘Event-triggered robust model predictive control of continuous-time nonlinear systems’, Automatica, 2014, 50, (5), pp. 15071513.
    24. 24)
      • 24. Peng, C., Han, Q.-L.: ‘A novel event-triggered transmission scheme and L2 control Co-design for sampled-data control systems’, IEEE Trans. Autom. Control, 2013, 58, (10), pp. 26202626.
    25. 25)
      • 25. Anta, A., Tabuada, P.: ‘To sample or not to sample self-triggered control for nonlinear systems’, IEEE Trans. Autom. Control, 2010, 55, (9), pp. 20302042.
    26. 26)
      • 26. Shi, D., Chen, T., Shi, L.: ‘Event-triggered maximum likelihood state estimation’, Automatica, 2014, 50, (1), pp. 247254.
    27. 27)
      • 27. Chen, J., Li, J., Lai, T.H.: ‘Energy-efficient intrusion detection with a barrier of probabilistic sensors: global and local’, IEEE Trans. Wirel. Commun., 2013, 12, (9), pp. 47424755.
    28. 28)
      • 28. Clark, A., Bushnell, L., Poovendran, R.: ‘A passivity-based framework for composing attacks on networked control systems’. Proc. 50th Annual Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, October 2012, pp. 18141821.
    29. 29)
      • 29. Foroush, H., Martínez, S.: ‘On event-triggered control of linear systems under periodic Denial-of-Service jamming attacks’. IEEE 51st Annual Conf. on Decision and Control (CDC), Maui, HI, USA, December, 2012, pp. 25512256.
    30. 30)
      • 30. Befekadu, G.K., Gupta, V., Antsaklis, P.J.: ‘Risk-sensitive control under a class of denial-of-service attack models’. American Control Conf. (ACC), San Francisco, CA, USA, June–July 2011, pp. 643648.
    31. 31)
      • 31. Long, M., Wu, C.-H., Hung, J.Y.: ‘Denial of service attacks on network-based control systems: impact and mitigation’, IEEE Trans. Ind. Inf., 2005, 1, (2), pp. 8596.
    32. 32)
      • 32. Pang, Z.-H., Liu, G.-P.: ‘Design and implementation of secure networked predictive control systems under deception attacks’, IEEE Trans. Control Syst. Technol., 2012, 20, (5), pp. 13341342.
    33. 33)
      • 33. Teixeira, A., Sandberg, H., Johansson, K.H.: ‘Networked control systems under cyber attacks with applications to power networks’. American Control Conf. (ACC), Baltimore, MD, USA, June–July 2010, pp. 36903696.
    34. 34)
      • 34. Mo, Y., Sinopoli, B.: ‘Secure control against replay attacks’. Proc. 47th Annual Allerton Conf. on Communication, Control, and Computing, Monticello, IL, USA, September–October 2009, pp. 911918.
    35. 35)
      • 35. Zhu, M., Martinez, S.: ‘On the performance analysis of resilient networked control systems under replay attacks’, IEEE Trans. Autom. Control, 2014, 59, (3), pp. 804808.
    36. 36)
      • 36. Amin, S., Cárdenas, A.A., Sastry, S.S.: ‘Safe and secure networked control systems under denial-of-service attacks’. HSCC 2009, 2009, pp. 3145.
    37. 37)
      • 37. Zhang, H., Shi, Y., Mehr, A.: ‘Robust static output feedback control and remote PID design for networked motor systems’, IEEE Trans. Ind. Electron., 2011, 58, (12), pp. 53965405.
    38. 38)
      • 38. Löfberg, J.: ‘YALMIP : a toolbox for modeling and optimization in MATLAB’. IEEE Int. Symp. on Computer Aided Control Systems Design, Taipei, Taiwan, September 2004, pp. 284289.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0135
Loading

Related content

content/journals/10.1049/iet-cta.2016.0135
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address