© The Institution of Engineering and Technology
This study is concerned with the dynamic output feedback control problem for fast sampling discretetime singularly perturbed systems using the singular perturbation approach. Sufficient conditions in terms of linear matrix inequalities (LMIs) are presented to guarantee the existence of a dynamic output feedback controller for the corresponding slow and fast subsystems, respectively. The controller gains and the corresponding coefficient matrices can be obtained via solving the proposed LMIs. Thus, not only the high dimensionality and the ill condition are alleviated, but also the regularity restrictions attached to the Riccatibased solutions are avoided. The theoretical result demonstrates that the composite dynamic output feedback control designed through those of the slow and fast subsystems can stabilise the fullorder discretetime singularly perturbed systems. Finally, two real world practical examples are provided to show the effectiveness of the obtained results.
References


1)

1. Kokotovic, P.V., Khalil, H.K., O'Reilly, J.: ‘Singular perturbation methods in control: analysis and design’ (Academic Press, London, 1986).

2)

2. O'Malley, R.E.: ‘Introduction to singular perturbations’ (Academic Press, New York, 1974).

3)

3. Naidu, D.S.: ‘Singular perturbations and time scales in control theory and applications: an overview, dynamics of continuous’, Discret. Impulsive Syst. B, Appl. Algorithms, 2002, 9, (2), pp. 233–278.

4)

4. Zhang, Y., Naidu, D.S., Cai, C.X., et al: ‘Singular perturbations and time scales in control theory and applications: an overview 2002–2012’, Int. J. Inf. Syst. Sci., 2014, 9, (1), pp. 1–36.

5)

5. Blankenship, G.: ‘Singularly perturbed difference equations in optimal control problems’, IEEE Trans. Autom. Control, 1981, 26, (4), pp. 911–917.

6)

6. Naidu, D.S.: ‘Singular perturbation methodology in control systems’ (Peter Peregrinus, London, 1988).

7)

7. Litkouhi, B., Khalil, H.K.: ‘Multirate and composite control of twotimescale discretetime systems’, IEEE Trans. Autom. Control, 1985, 30, (7), pp. 645–651.

8)

8. Dong, J., Yang, G.H.: ‘Robust H∞ control for standard discretetime singularly perturbed systems’, IET Control Theory Appl., 2007, 1, (4), pp. 1141–1148.

9)

9. Dong, J., Yang, G.H.: ‘H∞ control for fast sampling discretetime singularly perturbed systems’, Automatica, 2008, 44, (5), pp. 1385–1393.

10)

10. Naidu, D.S., Rao, A.K.: ‘Lecture notes in mathematics: singular perturbation analysis of discrete control systems’ (SpringerVerlag, New York, 1985), vol. 1154.

11)

11. Oloomi, H., Sawan, M.E.: ‘Combined filtering and stochastic control of discretetime linear singularly perturbed systems’. Proc. 29th Midwest Symp. on Circuits Systems, Lincoln, NE, August 1986.

12)

12. Vu, T.V., Sawan, M.E.: ‘H∞ control for singularly perturbed sampled data systems’. Proc. IEEE Int. Symp. on Circuits and Systems, 1993, pp. 2506–2509.

13)

13. Xu, S., Feng, G.: ‘New results on H∞ control of discrete singularly perturbed systems’, Automatica, 2009, 45, (10), pp. 2339–2343.

14)

14. Mahmoud, M.S.: ‘Design of observerbased controllers for a class of discrete systems’, Automatica, 1982, 18, (3), pp. 323–328.

15)

15. Oloomi, H., Alyatim, A., Sawan, M.E.: ‘Output feedback design of singularly perturbed discretetime systems’. IEEE Int. Symp. on Circuits and Systems, San Jose, CA, 1986, pp. 842–844.

16)

16. Oloomi, H., Sawan, M.E.: ‘The observerbased controller design of discretetime singularly perturbed systems’, IEEE Trans. Autom. Control, 1987, 32, (3), pp. 246–248.

17)

17. Mahmoud, M.S., Singh, M.G.: ‘On the use of reducedorder models in output feedback design of discrete systems’, Automatica, 1985, 21, (4), pp. 485–489.

18)

18. Li, T.H.S., Wang, M.S., Sun, Y.Y.: ‘Dynamic output feedback design for singularly perturbed discrete systems’, IMA J. Math. Control Inf., 1996, 13, (2), pp. 105–115.

19)

19. Li, T.H.S., Chiou, J.S., Kung, F.C.: ‘Stability bounds of singularly perturbed discrete systems’, IEEE Trans. Autom. Control, 1999, 44, (10), pp. 1934–1938.

20)

20. Abdelrahman, M.A., Naidu, D.S., Charalambous, C., et al: ‘Finitetime disturbance attenuation control problem for singularly perturbed discretetime systems’, Optim. Control Appl. Methods, 1998, 19, (2), pp. 137–145.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2016.0121
Related content
content/journals/10.1049/ietcta.2016.0121
pub_keyword,iet_inspecKeyword,pub_concept
6
6