http://iet.metastore.ingenta.com
1887

Stability of two-dimensional Roesser systems with time-varying delays via novel 2D finite-sum inequalities

Stability of two-dimensional Roesser systems with time-varying delays via novel 2D finite-sum inequalities

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study considers the problem of stability analysis of discrete-time two-dimensional (2D) Roesser systems with interval time-varying delays. New 2D finite-sum inequalities, which provide a tighter lower bound than the existing ones based on 2D Jensen-type inequalities, are first developed. Based on an improved Lyapunov–Krasovskii functional, the newly derived inequalities are then utilised to establish delay-range-dependent linear matrix inequality-based stability conditions for a class of discrete time-delay 2D systems. The effectiveness of the obtained results is demonstrated by numerical examples.

References

    1. 1)
      • 1. Roesser, R.P.: ‘A discrete state-space model for linear image processing’, IEEE Trans. Autom. Control, 1975, 20, (1), pp. 110.
    2. 2)
      • 2. Fornasini, E., Marchesini, G.: ‘State-space realization theory of two-dimensional filters’, IEEE Trans. Autom. Control, 1976, 21, (4), pp. 481491.
    3. 3)
      • 3. Fornasini, E., Marchesini, G.: ‘Doubly-indexed dynamical systems: state-space models and structural properties’, Math. Syst. Theory, 1978, 12, (1), pp. 5972.
    4. 4)
      • 4. Kaczorek, T.: ‘Two-dimensional linear systems’ (Springer, Berlin, 1985).
    5. 5)
      • 5. Lu, W.S.: ‘Two-dimensional digital filters’ (Marcel-Dekker, New York, 1992).
    6. 6)
      • 6. Du, C., Xie, L.: ‘H control and filtering of two-dimensional systems’ (Springer, Berlin, 2002).
    7. 7)
      • 7. Freeman, C.T., Lewin, P.L., Rogers, E.: ‘Further results on the experimental evaluation of iterative learning control algorithms for non-minimum phase plants’, Int. J. Control, 2007, 80, (4), pp. 569582.
    8. 8)
      • 8. Dymkou, S., Rogers, E., Dymkov, M., et al: ‘Constrained optimal control theory for differential linear repetitive processes’, SIAM J. Control Optim., 2008, 47, (1), pp. 396420.
    9. 9)
      • 9. Bors, D., Walczak, S.: ‘Application of 2D systems to investigation of a process of gas filtration’, Multidimens. Syst. Signal Process., 2012, 23, (1), pp. 119130.
    10. 10)
      • 10. Li, X., Gao, H.: ‘Robust finite frequency H filtering for uncertain 2-D Roesser systems’, Automatica, 2012, 48, (6), pp. 11631170.
    11. 11)
      • 11. Freeman, C.T., Rogers, E., Hughes, A.M., et al: ‘Iterative learning control in healthcare electrical stimulation and robotic-assisted upper limb stroke rehabilitation’, IEEE Control Syst. Mag., 2012, 32, (1), pp. 1843.
    12. 12)
      • 12. Wallen, J., Gunnarsson, S., Norrloff, M.: ‘Analysis of boundary effects in iterative learning control’, Int. J. Control, 2013, 86, (3), pp. 410415.
    13. 13)
      • 13. Rogers, E., Galkowski, K., Paszke, W., et al: ‘Multidimensional control systems: case studies in design and evaluation’, Multidimens. Syst. Signal Process., 2015, 26, (4), pp. 895939.
    14. 14)
      • 14. Li, X., Gao, H., Wang, C.: ‘Generalized Kalman–Yakubovich–Popov lemma for 2-D FM LSS model’, IEEE Trans. Autom. Control, 2012, 57, (12), pp. 30903103.
    15. 15)
      • 15. Yeganefar, N., Yeganefar, N., Ghamgui, M., et al: ‘Lyapunov theory for 2-D nonlinear Roesser models: application to asymptotic and exponential stability’, IEEE Trans. Autom. Control, 58, 2013, (5), pp. 12991304.
    16. 16)
      • 16. Shaker, H.R., Shaker, F.: ‘Lyapunov stability for continuous-time multidimensional nonlinear systems’, Nonlinear Dyn., 2014, 75, (4), pp. 717724.
    17. 17)
      • 17. Chesi, G., Middleton, R.H.: ‘Necessary and sufficient LMI conditions for stability and performance analysis of 2-D mixed continuous-discrete-time systems’, IEEE Trans. Autom. Control, 2014, 59, (4), pp. 9961007.
    18. 18)
      • 18. Xuhui, B., Hongqi, W., Zhongsheng, H., et al: ‘ H control for a class of 2-D nonlinear systems with intermittent measurements’, Appl. Math. Comput., 2014, 247, pp. 651662.
    19. 19)
      • 19. Xuhui, B., Hongqi, W., Zhongsheng, H., et al: ‘Stabilisation of a class of two-dimensional nonlinear systems with intermittent measurements’, IET Control Theory Appl., 2014, 8, (15), pp. 15961604.
    20. 20)
      • 20. Chen, X., Lam, J., Gao, H., et al: ‘Stability analysis and control design for 2-D fuzzy systems via basis-dependent Lyapunov functions’, Multidimens. Syst. Signal Process., 2013, 24, (3), pp. 395415.
    21. 21)
      • 21. Wu, L., Yang, R., Shi, P., et al: ‘Stability analysis and stabilization of 2-D switched systems under arbitrary and restricted switchings’, Automatica, 2015, 59, pp. 206215.
    22. 22)
      • 22. Wu, L., Wang, Z.: ‘Filtering and control for classes of two-dimensional systems’ (Springer, Dordrecht, 2015).
    23. 23)
      • 23. Li, X., Lam, J., Cheung, K.C.: ‘Generalized H model reduction for stable two-dimensional discrete systems’, Multidimens. Syst. Signal Process., 2016, 27, (2), pp. 359382.
    24. 24)
      • 24. Ahn, C.K., Kar, H.: ‘Passivity and finite-gain performance for two-dimensional digital filters: The FM LSS model case’, IEEE Trans. Circuit Syst. II, 2015, 62, (9), pp. 871875.
    25. 25)
      • 25. Wang, Z., Shang, H.: ‘Observer based fault detection for two dimensional systems described by Roesser models’, Multidimens. Syst. Signal Process., 2015, 26, (3), pp. 753775.
    26. 26)
      • 26. Li, X., Lam, J., Gao, H., et al: ‘A frequency-partitioning approach to stability analysis of two-dimensional discrete systems’, Multidimens. Syst. Signal Process., 2015, 26, (1), pp. 6793.
    27. 27)
      • 27. Sipahi, R., Niculescu, S.-I., Abdallah, C.T., et al: ‘Stability and stabilization of systems with time delay’, IEEE Control Syst., 2011, 31, (1), pp. 3865.
    28. 28)
      • 28. Kwon, O.M., Park, M.J., Park, J.H., et al: ‘Stability and stabilization for discrete-time systems with time-varying delays via augmented Lyapunov-Krasovskii functional’, J. Franklin Inst., 2013, 350, (3), pp. 521540.
    29. 29)
      • 29. Hien, L.V., An, N.T., Trinh, H.: ‘New results on state bounding for discrete-time systems with interval time-varying delay and bounded disturbance inputs’, IET Control Theory Appl., 2014, 8, (14), pp. 14051414.
    30. 30)
      • 30. Wang, J.-L., Wu, H.-N., Huang, T.: ‘Passivity-based synchronization of a class of complex dynamical networks with time-varying delay’, Automatica, 2015, 56, pp. 105112.
    31. 31)
      • 31. Hien, L.V., Vu, L.H., Phat, V.N.: ‘Improved delay-dependent exponential stability of singular systems with mixed interval time-varying delays’, IET Control Theory Appl., 2015, 9, (9), pp. 13641372.
    32. 32)
      • 32. Hashemi, M., Ghaisari, J., Askari, J.: ‘Adaptive control for a class of MIMO nonlinear time delay systems against time varying actuator failures’, ISA Trans., 2015, 57, pp. 2342.
    33. 33)
      • 33. Zhang, J., Lin, Y., Shi, P.: ‘Output tracking control of networked control systems via delay compensation controllers’, Automatica, 2015, 57, pp. 8592.
    34. 34)
      • 34. Hien, L.V., Phat, V.N., Trinh, H.: ‘New generalized Halanay inequalities with applications to stability of nonlinear non-autonomous time-delay systems’, Nonlinear Dyn., 2015, 82, (1), pp. 563575.
    35. 35)
      • 35. Hien, L.V., Trinh, H.: ‘An enhanced stability criterion for time-delay systems via a new bounding technique’, J. Franklin Inst., 2015, 352, pp. 44074422.
    36. 36)
      • 36. Feng, Z., Lam, J., Yang, G.H.: ‘Optimal partitioning method for stability analysis of continuous/discrete delay systems’, Int. J. Robust Nonlinear Control, 2015, 25, (4), pp. 559574.
    37. 37)
      • 37. Hien, L.V., Trinh, H.: ‘Refined Jensen-based inequality approach to stability analysis of time-delay systems’, IET Control Theory Appl., 2015, 9, (14), pp. 21882194.
    38. 38)
      • 38. Paszkea, W., Lam, J., Gałkowski, K., et al: ‘Robust stability and stabilisation of 2D discrete state-delayed systems’, Syst. Control Lett., 2004, 51, (3), pp. 277291.
    39. 39)
      • 39. Huang, S., Xiang, Z.: ‘Delay-dependent stability for discrete 2D switched systems with state delays in the Roesser model’, Circuit Syst. Signal Process., 2013, 32, (6), pp. 28212837.
    40. 40)
      • 40. Chen, S.-F.: ‘Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model’, Appl. Math. Comput., 2010, 216, (9), pp. 26132622.
    41. 41)
      • 41. Dey, A., Kar, H.: ‘An LMI based criterion for the global asymptotic stability of 2-D discrete state-delayed systems with saturation nonlinearities’, Digital Signal Process., 2012, 22, (4), pp. 633639.
    42. 42)
      • 42. Dey, A., Kar, H.: ‘LMI-based criterion for robust stability of 2-D discrete systems with interval time-varying delays employing quantisation/overflow nonlinearities’, Multidimens. Syst. Signal Process., 2014, 25, (3), pp. 473492.
    43. 43)
      • 43. Liang, J., Wang, Z., Liu, X.: ‘Robust state estimation for two-dimensional stochastic time-delay systems with missing measurements and sensor saturation’, Multidimens. Syst. Signal Process., 2014, 25, (1), pp. 157177.
    44. 44)
      • 44. Tadepalli, S.K., Kandanvli, V.K.R., Kar, H.: ‘A new delay-dependent stability criterion for uncertain 2-D discrete systems described by Roesser model under the influence of quantization/overflow nonlinearities’, Circuit Syst. Signal Process., 2015, 34, (8), pp. 25372559.
    45. 45)
      • 45. Benhayoun, M., Mesquine, F., Benzaouia, A.: ‘Delay-dependent stabilizability of 2D delayed continuous systems with saturating control’, Circuit Syst. Signal Process., 2013, 32, (6), pp. 27232743.
    46. 46)
      • 46. Hmamed, A., Kririm, S., Benzaouia, A., et al: ‘Delay-dependent stability and stabilisation of continuous 2D delayed systems with saturating control’, Int. J. Syst. Sci., 2016, 47, (12), pp. 30043015.
    47. 47)
      • 47. Feng, Z.-Y., Xu, L., Wu, M., et al: ‘Delay-dependent robust stability and stabilisation of uncertain two-dimensional discrete systems with time-varying delays’, IET Control Theory Appl., 2010, 4, (10), pp. 19591971.
    48. 48)
      • 48. Yao, J., Wang, W., Zou, Y.: ‘The delay-range-dependent robust stability analysis for 2-D state-delayed systems with uncertainty’, Multidimens. Syst. Signal Process., 2013, 24, (1), 87103.
    49. 49)
      • 49. Peng, D., Hua, C.: ‘Improved approach to delay-dependent stability and stabilization of two-dimensional discrete-time systems with interval time-varying delays’, IET Control Theory Appl., 2015, 9, (12), pp. 18391845.
    50. 50)
      • 50. El-Kasri, C., Hmamed, A., Tissir, E.H., et al: ‘Robust H filtering for uncertain two-dimensional continuous systems with time-varying delays’, Multidimens. Syst. Signal Process., 2013, 24, (4), pp. 685706.
    51. 51)
      • 51. Duan, Z., Xiang, Z., Karimi, H.R.: ‘Robust stabilisation of 2D state-delayed stochastic systems with randomly occurring uncertainties and nonlinearities’, Int. J. Syst. Sci., 2014, 45, (7), pp. 14021415.
    52. 52)
      • 52. Ye, S., Li, J., Yao, J.: ‘Robust H control for a class of 2-D discrete delayed systems’, ISA Trans., 2014, 53, (5), pp. 14561462.
    53. 53)
      • 53. Huang, S., Xiang, Z.: ‘Delay-dependent robust H control for 2-D discrete nonlinear systems with state delays’, Multidimens. Syst. Signal Process., 2014, 25, (4), pp. 775794.
    54. 54)
      • 54. Ghamgui, M., Yeganefar, N., Bachelier, O., et al: ‘ H performance analysis of 2D continuous time-varying delay systems’, Circuit Syst. Signal Process., 2015, 34, (11), pp. 34893504.
    55. 55)
      • 55. Nam, P.T., Pubudu, P.N., Trinh, H.: ‘Discrete Wirtinger-based inequality and its application’, J. Franklin Inst., 2015, 352, pp. 18931905.
    56. 56)
      • 56. Cacace, F., Germani, A., Manes, C.: ‘A chain observer for nonlinear systems with multiple time-varying measurement delays’, SIAM J. Control Optim., 2014, 52, (3), pp. 18621885.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0078
Loading

Related content

content/journals/10.1049/iet-cta.2016.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address