access icon free Model reference composite learning control without persistency of excitation

Parameter convergence is desirable in adaptive control as it brings several attractive features, including accurate online modelling, exponential tracking, and robust adaptation without parameter drift. However, a strong persistent-excitation (PE) condition must be satisfied to guarantee parameter convergence in the conventional adaptive control. This study proposes a model reference composite learning control strategy to guarantee parameter convergence without the PE condition. In the composite learning, an integral at a moving-time window is applied to construct a prediction error, an integral transformation is derived for avoiding the time derivation of plant states in the calculation of the prediction error, and both the tracking error and the prediction error are applied to update parametric estimates. Global exponential stability of the closed-loop system is established under an interval-excitation condition which is much weaker than the PE condition. Compared with a concurrent learning technique that has the same aim as this study, the proposed composite learning technique avoids the usage of singular value maximisation and fixed-point smoothing resulting in a considerable reduction of computational cost. Numerical results have verified effectiveness and superiority of the proposed control strategy.

Inspec keywords: learning systems; model reference adaptive control systems; asymptotic stability; parameter estimation

Other keywords: robust adaptation; composite learning technique; moving-time window; online modelling; integral transformation; persistent-excitation condition; tracking error; parameter convergence; interval-excitation condition; prediction error; adaptive control; closed-loop system; model reference composite learning control strategy; global exponential stability; exponential tracking; PE condition; computational cost; parametric estimation

Subjects: Self-adjusting control systems; Simulation, modelling and identification; Stability in control theory

References

    1. 1)
      • 27. Xu, B., Sun, F.C., Pan, Y.P., et al:'Disturbance observer-based composite learning fuzzy control for nonlinear systems with unknown dead zone', IEEE Trans. Syst. Man Cybern. Syst., to be published.
    2. 2)
      • 20. Lavretsky, E.: ‘Combined/composite model reference adaptive control’, IEEE Trans. Autom. Control, 2009, 54, (11), pp. 26922697.
    3. 3)
      • 32. Fu, K.S.: ‘Learning control systems – Review and outlook’, IEEE Trans. Autom. Control, 1970, 15, (2), pp. 210221.
    4. 4)
      • 19. Ciliz, M.K.: ‘Combined direct and indirect adaptive control for a class of nonlinear systems’, IET Control Theory Appl., 2009, 3, (1), pp. 151159.
    5. 5)
      • 7. Khan, S.G., Herrmann, G., Lewis, F.L., et al: ‘Reinforcement learning and optimal adaptive control: an overview and implementation examples’, Annu. Rev. Control, 2012, 36, (1), pp. 4259.
    6. 6)
      • 25. Pan, Y.P., Zhou, Y., Sun, T.R., et al: ‘Composite adaptive fuzzy H tracking control of uncertain nonlinear systems’, Neurocomputing, 2013, 99, pp. 1524.
    7. 7)
      • 37. Pan, Y.P., Gao, Q., Yu, H.Y.: ‘Fast and low-frequency adaption in neural network control’, IET Control Theory Appl., 2014, 8, (17), pp. 20622069.
    8. 8)
      • 16. Slotine, J.-J.E., Li, W.P.: ‘Composite adaptive control of robot manipulators’, Automatica, 1989, 25, (4), pp. 509519.
    9. 9)
      • 8. Martin-Sanchez, J.M., Lemos, J.M., Rodellar, J.: ‘Survey of industrial optimized adaptive control’, Int. J. Adapt. Control Signal Process., 2012, 26, (10), pp. 881918.
    10. 10)
      • 33. Pan, Y.P., Pan, L., Yu, H.Y.: ‘Composite learning control with application to inverted pendulums’. Proc. Chinese Automation Congress, Wuhan, China, 2015, pp. 232236.
    11. 11)
      • 5. Anderson, B.D.O., Dehghani, A.: ‘Challenges of adaptive control – past, permanent and future’, Annu. Rev. Control, 2008, 32, (2), pp. 123135.
    12. 12)
      • 22. Kim, B.Y., Ahn, H.S.: ‘A design of bilateral teleoperation systems using composite adaptive controller’, Control Eng. Pract., 2013, 21, (12), pp. 16411652.
    13. 13)
      • 21. Dydek, Z.T., Annaswamy, A.M., Slotine, J.J.E., et al: ‘Composite adaptive posicast control for a class of LTI plants with known delay’, Automatica, 2013, 49, (6), pp. 19141924.
    14. 14)
      • 24. Pan, Y.P., Er, M.J., Sun, T.R.: ‘Composite adaptive fuzzy control for synchronizing generalized Lorenz systems’, Chaos, 2012, 22, (2), Article ID 023144.
    15. 15)
      • 9. Annaswamy, A.M., Lavretsky, E., Dydek, Z.T., et al: ‘Recent results in robust adaptive flight control systems’, Int. J. Adapt. Control Signal Process., 2013, 27, (1–2), pp. 421.
    16. 16)
      • 6. Krstic, M., Smyshlyaev, A.: ‘Adaptive control of PDEs’, Annu. Rev. Control, 2008, 32, (2), pp. 149160.
    17. 17)
      • 26. Xu, B., Shi, Z.K., Yang, C.G.: ‘Composite fuzzy control of a class of uncertain nonlinear systems with disturbance observer’, Nonlinear Dyn., 2015, 80, (1), pp. 341351.
    18. 18)
      • 12. Tao, G.: ‘Multivariable adaptive control: a survey’, Automatica, 2014, 50, (11), pp. 27372764.
    19. 19)
      • 28. Volyanskyy, K.Y., Haddad, W.M., Calise, A.J.: ‘A new neuroadaptive control architecture for nonlinear uncertain dynamical systems: Beyond σ- and e-modifications’, IEEE Trans. Neural Netw., 2009, 20, (11), pp. 17071723.
    20. 20)
      • 18. Ciliz, M.K., Cezayirli, A.: ‘Increased transient performance for the adaptive control of feedback linearizable systems using multiple models’, Int. J. Control, 2006, 79, (10), pp. 12051215.
    21. 21)
      • 23. Patre, P.M., MacKunis, W., Johnson, M., et al: ‘Composite adaptive control for Euler-Lagrange systems with additive disturbances’, Automatica, 2010, 46, (1), pp. 140147.
    22. 22)
      • 29. Pan, Y.P., Liu, Y.Q., Yu, H.Y.: ‘Online data-driven composite adaptive backstepping control with exact differentiators’, Int. J. Adapt. Control Signal Process., 2016, 30, (5), pp. 779789.
    23. 23)
      • 14. Chowdhary, G., Johnson, E.: ‘Theory and flight-test validation of a concurrent-learning adaptive controller’, J. Guid. Control Dyn., 2011, 34, (2), pp. 592607.
    24. 24)
      • 10. Barkana, I.: ‘Simple adaptive control – a stable direct model reference adaptive control methodology – brief survey’, Int. J. Adapt. Control Signal Process., 2014, 28, (7–8), pp. 567603.
    25. 25)
      • 3. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (Prentice-Hall, Englewood Cliffs, NJ, USA, 1996).
    26. 26)
      • 27. Disturbance observer-based composite learning fuzzy control for nonlinear systems with unknown dead zone', IEEE Trans. Syst. Man Cybern. Syst., to be published.
    27. 27)
      • 1. Sastry, S., Bodson, M.: ‘Adaptive control: stability, convergence and robustness’ (Prentice-Hall, Englewood Cliffs, NJ, USA, 1989).
    28. 28)
      • 2. Astrom, K.J., Wittenmark, B.: ‘Adaptative control’ (Addison-Wesley, Boston, MA, USA, 1995, 2nd edn.).
    29. 29)
      • 13. Chowdhary, G., Johnson, E.: ‘Concurrent learning for convergence in adaptive control without persistency of excitation’. Proc. Int. Conf. Decision Control, Atlanta, GA, USA, 2010, pp. 36743679.
    30. 30)
      • 15. Chowdhary, G., Muhlegg, M., Johnson, E.: ‘Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation’, Int. J. Control, 2014, 87, (8), pp. 15831603.
    31. 31)
      • 31. Antsaklis, P.J.: ‘Intelligent learning control’, IEEE Control Syst. Mag., 1995, 15, (3), pp. 57.
    32. 32)
      • 17. Duarte-Mermoud, M.A., Rioseco, J.S., Gonzalez, R.I.: ‘Control of longitudinal movement of a plane using combined model reference adaptive control’, Aircr. Eng. Aerosp. Technol., 2005, 77, (3), pp. 199213.
    33. 33)
      • 34. Pan, Y.P., Er, M.J., Pan, L., et al: ‘Composite learning from model reference adaptive fuzzy control’. Proc. Int. Conf. Fuzzy Theory Applications, Yilan, Taiwan, 2015, pp. 9196.
    34. 34)
      • 11. Chan, L.P., Naghdy, F., Stirling, D.: ‘Application of adaptive controllers in teleoperation systems: a survey’, IEEE Trans. Hum. Mach. Syst., 2014, 44, (3), pp. 337352.
    35. 35)
      • 30. Pan, Y.P., Sun, T.R., Yu, H.Y.: ‘Composite adaptive dynamic surface control using online recorded data’, Int. J. Robust Nonlinear Control, to be published, DOI: 10.1002/rnc.3541.
    36. 36)
      • 4. Anderson, B.D.O.: ‘Failures of adaptive control theory and their resolution’, Commun. Inf. Syst., 2005, 5, (1), pp. 120.
    37. 37)
      • 36. Pan, Y.P., Yu, H.Y.: ‘Composite learning from adaptive dynamic surface control’, IEEE Trans. Autom. Control, 2016, to be published.
    38. 38)
      • 35. Pan, Y.P., Pan, L., Darouach, M., et al: ‘Composite learning: an efficient way of parameter estimation in adaptive control’. Chinese Control Conf., Chengdu, China, 2016, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0032
Loading

Related content

content/journals/10.1049/iet-cta.2016.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading