http://iet.metastore.ingenta.com
1887

On asynchronous filtering for networked fuzzy systems with Markov jump parameters over a finite-time interval

On asynchronous filtering for networked fuzzy systems with Markov jump parameters over a finite-time interval

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the problem of asynchronous filtering is investigated for discrete-time networked Takagi–Sugeno fuzzy Markov jump systems (FMJSs). The system measurements are transmitted over an unreliable communication network affected by sensor non-linearity and packet dropouts. The purpose is to design an asynchronous filter for discrete-time FMJSs such that the resulting filtering error system is not only finite-time bounded for the given conditions, but also satisfies a prescribed performance. Some sufficient conditions for the existence of the asynchronous filter are presented, and the corresponding design problem is converted into a convex optimisation one. Finally, a numerical example and a modified inverted pendulum model are utilised to demonstrate the usefulness of our proposed approach.

References

    1. 1)
      • 1. Gray, W.S., González, O.R., Doğan, M.: ‘Stability analysis of digital linear flight controllers subject to electromagnetic disturbances’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (4), pp. 12041218.
    2. 2)
      • 2. Shen, H., Zhu, Y., Zhang, L., et al: ‘Extended dissipative state estimation for Markov jump neural networks with unreliable links’, IEEE Trans. Neural Netw. Learn. Syst., 2016, DOI:10.1109/TNNLS.2015.2511196.
    3. 3)
      • 3. Shi, Y., Yu, B.: ‘Robust mixed H2/H control of networked control systems with random time delays in both forward and backward communication links’, Automatica, 2011, 47, pp. 754760.
    4. 4)
      • 4. Svensson, L.E., Williams, N.: ‘Optimal monetary policy under uncertainty: a Markov jump-linear-quadratic approach’, Fed. Reserve Bank St. Louis Rev., 2008, 90, (4), pp. 275293.
    5. 5)
      • 5. Ugrinovskii, V., Pota, H.R.: ‘Decentralized control of power systems via robust control of uncertain Markov jump parameter systems’, Int. J. Control, 2005, 78, (9), pp. 662677.
    6. 6)
      • 6. Wu, L., Shi, P., Gao, H.: ‘State estimation and sliding-mode control of Markovian jump singular systems’, IEEE Trans. Autom. Control, 2010, 55, pp. 12131219.
    7. 7)
      • 7. Xiong, J., Lam, J.: ‘Fixed-order robust H filter design for Markovian jump systems with uncertain switching probabilities’, IEEE Trans. Signal Process., 2006, 54, (4), pp. 14211430.
    8. 8)
      • 8. Chadli, M., Guerra, T.-M.: ‘LMI solution for robust static output feedback control of Takagi–Sugeno fuzzy models’, IEEE Trans. Fuzzy Syst., 2012, 20, (6), pp. 11601165.
    9. 9)
      • 9. Li, H., Shi, P., Yao, D., et al: ‘Observer-based adaptive sliding mode control of nonlinear Markovian jump systems’, Automatica, 2016, 64, pp. 133142.
    10. 10)
      • 10. Luan, X., Zhao, S., Shi, P., et al: ‘H filtering for discrete-time Markov jump systems with unknown transition probabilities’, Int. J. Adapt. Control Signal Process., 2014, 28, (2), pp. 138148.
    11. 11)
      • 11. Park, B.Y., Kwon, N.K., Park, P.: ‘Stabilization of Markovian jump systems with incomplete knowledge of transition probabilities and input quantization’, J. Franklin Inst., 2015, 352, (10), pp. 43544365.
    12. 12)
      • 12. Shen, H., Xu, S., Lu, J., et al: ‘Passivity based control for uncertain stochastic jumping systems with mode-dependent round-trip time delays’, J. Franklin Inst., 2012, 349, pp. 16651680.
    13. 13)
      • 13. Sheng, L., Zhang, W., Gao, M.: ‘Relationship between nash equilibrium strategies and control of stochastic Markov jump systems with multiplicative noise’, IEEE Trans. Autom. Control, 2014, 59, (9), pp. 25922597.
    14. 14)
      • 14. You, J., Yin, S., Yu, Z.: ‘Robust estimation for discrete time-delay Markov jump systems with sensor non-linearity and missing measurements’, IET Control Theory Appl., 2014, 8, (5), pp. 330337.
    15. 15)
      • 15. Zhong, X., He, H., Zhang, H., et al: ‘Optimal control for unknown discrete-time nonlinear Markov jump systems using adaptive dynamic programming’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (12), pp. 21412155.
    16. 16)
      • 16. Lam, H.-K., Leung, F.H.F.: ‘Design and stabilization of sampled-data neural-network-based control systems’, IEEE Trans. Syst. Man Cybern. B, Cybem., 2006, 36, pp. 9951005.
    17. 17)
      • 17. Su, X., Wu, L., Shi, P., et al: ‘Model approximation for fuzzy switched systems with stochastic perturbation’, IEEE Trans. Fuzzy Syst., 2015, 23, (5), pp. 14581473.
    18. 18)
      • 18. Xie, X., Yue, D., Zhang, H., et al: ‘Control synthesis of discrete-time T–S fuzzy systems via a multi-instant homogenous polynomial approach’, IEEE Trans. Cybernet., 2016, 46, (3), pp. 630640.
    19. 19)
      • 19. Yang, X., Wu, L., Lam, H.-K., et al: ‘Stability and stabilization of discrete-time T–S fuzzy systems with stochastic perturbation and time-varying delay’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 124138.
    20. 20)
      • 20. Zhao, X., Zhang, L., Shi, P., et al: ‘Novel stability criteria for T–S fuzzy systems’, IEEE Trans. Fuzzy Syst., 2014, 22, (2), pp. 313323.
    21. 21)
      • 21. Nguang, S.K., Assawinchaichote, W., Shi, P., et al: ‘Robust H control design for uncertain fuzzy systems with Markovian jumps: an LMI approach’. Proc. of the American Control Conf., 2005, pp. 18051810.
    22. 22)
      • 22. Ding, W., Mao, Z., Jiang, B., et al: ‘H fault detection for a class of T–S fuzzy model-based nonlinear networked control systems’. World Congress, 2014, vol. 19, pp. 1164711652.
    23. 23)
      • 23. Lu, R., Wu, H., Bai, J.: ‘Networked H filtering for T–S fuzzy systems with quantization and data dropouts’, J. Franklin Inst., 2014, 351, (6), pp. 31263144.
    24. 24)
      • 24. Zhang, D., Cai, W., Xie, L., et al: ‘Non-fragile distributed filtering for T–S fuzzy systems in sensor networks’, IEEE Trans. Fuzzy Syst., 2014, 23, (5), pp. 18831890.
    25. 25)
      • 25. Arrifano, N.S., Oliveira, V.A.: ‘Robust fuzzy control approach for a class of Markovian jump nonlinear systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (6), pp. 738754.
    26. 26)
      • 26. Shen, M., Ye, D.: ‘Improved fuzzy control design for nonlinear Markovian-jump systems with incomplete transition descriptions’, Fuzzy Sets Syst., 2013, 217, pp. 8095.
    27. 27)
      • 27. Zhang, Y., Xu, S., Zhang, B.: ‘Robust output feedback stabilization for uncertain discrete-time fuzzy Markovian jump systems with time-varying delays’, IEEE Trans. Fuzzy Syst., 2009, 17, (2), pp. 411420.
    28. 28)
      • 28. Yin, Y., Shi, P., Liu, F., et al: ‘Fuzzy model-based robust H filtering for a class of nonlinear nonhomogeneous Markov jump systems’, Signal Process., 2013, 93, (9), pp. 23812391.
    29. 29)
      • 29. Shu, Z., Xiong, J., Lam, J.: ‘Asynchronous output-feedback stabilization of discrete-time Markovian jump linear systems’, IEEE Conf. Decis. Control, 2012, 47, pp. 13071312.
    30. 30)
      • 30. Wu, Z.-G., Shi, P., Su, H., et al: ‘Asynchronous l2l filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities’, Automatica, 2014, 50, (1), pp. 180186.
    31. 31)
      • 31. Zhang, L., Zhu, Y., Shi, P., et al: ‘Resilient asynchronous H filtering for Markov jump neural networks with unideal measurements and multiplicative noises’, IEEE Trans. Cybern., 2015, 45, (12), pp. 28402852.
    32. 32)
      • 32. Liu, X., Ho, D.W., Yu, W., et al: ‘A new switching design to finite-time stabilization of nonlinear systems with applications to neural networks’, Neural Netw., 2014, 57, pp. 94102.
    33. 33)
      • 33. Sun, Y., Li, G.: ‘Finite-time stability and stabilization of networked control systems with bounded Markovian packet dropout’, Discrete Dyn. Nat. Soc., 2014, 2014, Article ID 176919, pp. 6.
    34. 34)
      • 34. He, S., Xu, H.: ‘Non-fragile finite-time filter design for time-delayed Markovian jumping systems via T–S fuzzy model approach’, Nonlinear Dyn., 2015, 80, (3), pp. 11591171.
    35. 35)
      • 35. Alonso-Quesada, S., Sen, De la, Ibeas, M., A.: ‘A data dropout compensation algorithm based on the iterative learning control methodology for discrete-time systems’, Math. Probl. Eng., 2015, 2015, Article ID 429892, pp. 16.
    36. 36)
      • 36. Hsu, W.-C., Lee, L.-W., Tseng, K.-H., et al: ‘Design of feedback control for networked finite-distributed delays systems with quantization and packet dropout compensation’, Discrete Dyn. Nat. Soc., 2015, 2015, Article ID 158972, pp. 15.
    37. 37)
      • 37. Liu, C., Xu, J., Wu, J.: ‘Iterative learning control for remote control systems with communication delay and data dropout’, Math. Probl. Eng., 2012, 2012, Article ID 705474, pp. 14.
    38. 38)
      • 38. Lubomír, B., De la Sen, M.: ‘Decentralized resilient H-infinity observer-based control for a class of uncertain interconnected networked systems’. Proc. of the 2010 American Control Conf., 2010, pp. 13381343.
    39. 39)
      • 39. Niu, Y., Ho, D.W.: ‘Control strategy with adaptive quantizer's parameters under digital communication channels’, Automatica, 2014, 50, (10), pp. 26652671.
    40. 40)
      • 40. Wang, Z., Dong, H., Shen, B., et al: ‘Finite-horizon H filtering with missing measurements and quantization effects’, IEEE Trans. Autom. Control, 2013, 58, (7), pp. 17071718.
    41. 41)
      • 41. Yang, G.-H., Che, W.W.: ‘Non-fragile H filter design for linear continuous-time systems’, Automatica, 2008, 44, pp. 28492856.
    42. 42)
      • 42. Tuan, H.D., Apkarian, P., Narikiyo, T., et al: ‘Parameterized linear matrix inequality techniques in fuzzy control system design’, IEEE Trans. Fuzzy Syst., 2001, 9, (2), pp. 324332.
    43. 43)
      • 43. Amato, F., Ariola, M.: ‘Finite-time control of discrete-time linear systems’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 724729.
    44. 44)
      • 44. Liu, J., Laghrouche, S., Harmouche, M., et al: ‘Adaptive-gain second-order sliding mode observer design for switching power converters’, Control Eng. Pract., 2014, 30, pp. 124131.
    45. 45)
      • 45. Liu, J., Laghrouche, S., Wack, M.: ‘Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications’, Int. J. Control, 2014, 87, (6), pp. 11171130.
    46. 46)
      • 46. Zhang, C., Jiang, L., Wu, Q., et al: ‘Delay-dependent robust load frequency control for time delay power systems’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21922201.
    47. 47)
      • 47. Qiu, J., Feng, G., Yang, J.: ‘A new design of delay-dependent robust H filtering for discrete-time T–S fuzzy systems with time-varying delay’, IEEE Trans. Fuzzy Syst., 2009, 17, (5), pp. 10441058.
    48. 48)
      • 48. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (John Wiely & Sons, New York, 2001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0016
Loading

Related content

content/journals/10.1049/iet-cta.2016.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address