Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust adaptive gain neural observer for a class of non-linear systems

This study investigates the design of robust adaptive gain neural observer (RA NO) for a large class of non-linear systems with unknown constant parameters in the presence of bounded external perturbations on the state vector and on the output of the original system. The proposed adaptive observer incorporates radial basis functions (RBFs) neural networks (NN) to approximate the unknown non-linearities existing in the system. The weight dynamics of every RBFNN are adjusted on-line by using an adaptive projection algorithm. The proof of the asymptotic convergence of the state and parameter estimate errors is achieved by using Lyapunov arguments under a well-defined persistent exciting condition, and without recourse to the strictly positive real condition. The effect of unknown disturbances is reduced by integrating a gain performance criterion into the proposed estimation scheme. The existence condition of the proposed observer such that all estimated signals are uniformly ultimately bounded is expressed in the form of the linear matrix inequality problem. To evaluate the performance of the proposed observer, three simulations are made.

References

    1. 1)
      • 8. Rajamani, R., Hedrick, J.: ‘Adaptive observers for active automotive suspensions: theory and experiment’, IEEE Trans. Control Syst. Technol., 1995, 3, (1), pp. 8693.
    2. 2)
      • 17. Abdollahi, F., Talebi, H.A.: ‘A stable neural network observe-based observer with application to flexible joint manipulators’, IEEE Trans. Neural Netw., 2006, 1, pp. 118129.
    3. 3)
      • 1. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (Prentice Hall, 1996).
    4. 4)
      • 12. Yu, W., Moreno, M.A., Li, X.: ‘Observer-based neuro identifier’, IEE Proc. Control Theory Applic., 2000, 147, (2), pp. 145152.
    5. 5)
      • 32. Wang, J., Zhao, J.: ‘Stability analysis and control synthesis for a class of cascade switched nonlinear systems with actuator saturation’, Circ. Syst. Signal Process, 2014, 33, (9), pp. 29612970.
    6. 6)
      • 15. Huang, S.N., Tan, K.K., Lee, T.H.: ‘Further result on a dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems’, Automatica, 2005, 41, pp. 21612162.
    7. 7)
      • 4. Bastin, G., Gevers, M.R.: ‘Stable adaptive observers for nonlinear time-varying systems’, IEEE Trans. Autom. Control, 1988, 33, (7), pp. 650658.
    8. 8)
      • 5. Marino, R., Tomei, P.: ‘Global adaptive observers for nonlinear systems via filtered transformations’, IEEE Trans. Autom. Control, 1992, 37, (8), pp. 12391245.
    9. 9)
      • 28. Wu, H.-N., Li, H.-X.: ‘Robust adaptive neural observer design for a class of nonlinear parabolic PDE systems’, J. Process Control, 2011, 21, (8), pp. 11721182.
    10. 10)
      • 34. Pomet, J.-B., Praly, L.: ‘Adaptive nonlinear regulation: estimation from the Lyapunov equation’, IEEE Trans. Autom. Control, 1992, 37, (6), pp. 729740.
    11. 11)
      • 25. Harl, N., Rajagopal, K., Balakrishnan, S.N.: ‘Neural network based modified state observer for orbit uncertainty estimation’, J. Guid. Control Dyn., 2013, 36, (4), pp. 11941209.
    12. 12)
      • 2. Zhang, Q.: ‘Adaptive observers for MIMO linear time-varying systems’, IEEE Trans. Autom. Control, 2002, 47, pp. 525529.
    13. 13)
      • 14. Kim, Y.H., Lewis, F.L., Abdallah, C.T.: ‘Nonlinear observer design using dynamic recurrent neural networks’. Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, 1996, vol. 1, pp. 949954.
    14. 14)
      • 27. Stepanyan, V., Hovakimyan, N.: ‘Robust adaptive observer design for uncertain systems with bounded disturbances’, IEEE Trans. Neural Netw., 2007, 18, (5), pp. 13921403.
    15. 15)
      • 31. Niu, B., Zhao, J.: ‘Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems’, Syst. Control Lett., 2013, 62, (10), pp. 963971.
    16. 16)
      • 3. Luders, G., Narendra, K.S.: ‘An adaptive observer and identifier for a linear system’, IEEE Trans. Autom. Control, 1973, 18, pp. 496499.
    17. 17)
      • 13. Chairez, I., Poznyak, A., Poznyak, T.: ‘Stable weights dynamics for a class of differential neural network observer’, IET Control Theory Applic., 2009, 3, (10), pp. 14371447.
    18. 18)
      • 10. Ekramianan, M., Sheikholeslam, F., Hosseinnia, S., et al: ‘Adaptive state observer for Lipschitz nonlinear systems’, Syst. Control Lett., 2013, 62, (4), pp. 319323.
    19. 19)
      • 29. Liberzon, D.: ‘Switching in systems and control’ (Birkhauser, Boston, 2003).
    20. 20)
      • 38. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’. 2001.
    21. 21)
      • 20. Zemouche, A., Boutayeba, M.: ‘A unified H adaptive observer synthesis method for a class of systems with both Lipschitz and Monotone nonlinearities’, Syst. Control Lett., 2009, 58, (4), pp. 282288.
    22. 22)
      • 18. Lakhal, A.N., Tlili, A.S., Benhadj Braiek, N.: ‘Neural network observer for nonlinear systems application to induction motors’, Int. J. Control Autom., 2010, 3, (1), pp. 116.
    23. 23)
      • 21. Zhu, J., Khayati, K.: ‘LMI-based adaptive observers for nonlinear systems’, Int. J. Mech. Eng Mechatron., 2013, 1, (2), pp. 5060.
    24. 24)
      • 35. Khalil, H.K.: ‘Adaptive output feedback control of nonlinear systems represented by input-output models’, IEEE Trans. Autom. Control, 1996, 41, pp. 177188.
    25. 25)
      • 19. Pratap, B., Purwar, S.: ‘Neural network observer for twin rotor MIMO system: an LMI based approach’. Proc. of the 2010 Int. Conf. on Modelling, Identification and Control, Okayama, Japan, 2010, pp. 539544.
    26. 26)
      • 26. Lian, J., Hu, J., Zak, S.H.: ‘Variable neural adaptive robust observer for uncertain systems’. IEEE Int. Symp. on Intelligent Control (ISIC), 28–30 September 2011, pp. 13351340.
    27. 27)
      • 11. Farza, M., M'Saad, M., Maatoug, T., et al: ‘Adaptive observers for nonlinearly parameterized class of nonlinear systems’, Automatica, 2009, 45, (10), pp. 22922299.
    28. 28)
      • 36. Chen, F., Zhang, W.: ‘LMI criteria for robust chaos synchronization of a class of chaotic systems’, IEEE Trans. Nonlinear Anal., 2007, 67, pp. 33843393.
    29. 29)
      • 30. Niu, B., Karimi, H.R., Wang, H., et al: ‘Adaptive output-feedback controller design for switched nonlinear stochastic systems with a modified average dwell-time method’, IEEE Trans. Syst. Man Cybern. Syst., 2016, DOI: 10.1109/TSMC.2016.2597305.
    30. 30)
      • 33. Zhao, X., Zhang, L., Shi, P., et al: ‘Stability and stabilization of switched linear systems with mode-dependent average dwell time’, IEEE Trans. Autom. Control, 2012, 57, (7), pp. 18091815.
    31. 31)
      • 22. Zhu, J., Khayati, K.: ‘On robust nonlinear adaptive observer – LMI design’. Int. Conf. on Mechanical Engineering and Mechatronics, Ottawa, Canada, 2012.
    32. 32)
      • 7. Morino, R., Tomie, P.: ‘Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems via filtered transformations’, IEEE Trans. Autom. Control, 1995, 40, pp. 13001304.
    33. 33)
      • 24. Marino, R., Santosuosso, G.L., Tomei, P.: ‘Robust adaptive observers for nonlinear systems with bounded disturbances’, IEEE Trans. Autom. Control, 2001, 46, pp. 967972.
    34. 34)
      • 16. Abdollahi, F., Talebi, H.A.: ‘A stable neural network observer with application to flexible joint manipulators. Neural Information Processing, ICONIP ’02'. Proc. of the 9th Int. Conf., 2002, vol. 4, pp. 19101914.
    35. 35)
      • 9. Cho, Y., Rajamani, R.: ‘A systematic approach to adaptive observer synthesis for nonlinear systems’, IEEE Trans. Autom. Control, 1997, 42, (4), pp. 534537.
    36. 36)
      • 6. Santosuosso, G.L., Marino, R., Tomei, P.: ‘Adaptive observers for nonlinear systems with bounded disturbances’, IEEE Trans. Autom. Control, 2001, 46, pp. 967972.
    37. 37)
      • 37. Boyd, S., Ghaoui, L.E., Feron, E., et al: ‘Linear matrix inequalities in system and control theory’ (Society for Industrial and Applied Mathematics, 1994).
    38. 38)
      • 23. Mahdi, P., Vahid, J.M.: ‘A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization’, Chin. Phys. B, 2011, 20, Article ID 120503.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1340
Loading

Related content

content/journals/10.1049/iet-cta.2015.1340
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address