access icon free Adaptive tracking control of uncertain switched non-linear systems with application to aircraft wing rock

This study proposes an adaptive control scheme for global tracking of a class of switched non-linear systems involving unknown saturated-like Prandtl–Ishlinskii (PI) hysteresis. The switching information is assumed to be unobservable. A bound estimation approach is introduced to circumvent the obstacle caused by unknown switching and PI hysteresis. It is shown that under arbitrary switching, the proposed controller guarantees all signals of the overall closed-loop system are globally uniformly bounded, and the tracking error can converge to an arbitrarily small residual set. The proposed control scheme is tested on a typical wing rock system in the face of persistent aerodynamic parameter changes. Simulation results demonstrate suppression of the wing rock and exhibit better transient performance in comparison with some existing method.

Inspec keywords: closed loop systems; adaptive control; switching systems (control); nonlinear control systems; aircraft control; aerospace components; control system synthesis; uncertain systems; aerodynamics

Other keywords: aerodynamic parameter; unknown switching; unknown saturated-like PI hysteresis; overall closed-loop system; transient performance; arbitrarily small-residual set; bound estimation approach; arbitrary switching; tracking error convergence; global tracking; aircraft wing rock; uncertain switched nonlinear systems; globally uniformly bounded system; unobservable switching information; adaptive tracking control; unknown saturated-like Prandtl-Ishlinskii hysteresis

Subjects: Aerospace control; Nonlinear control systems; Control system analysis and synthesis methods; Time-varying control systems; Self-adjusting control systems

References

    1. 1)
      • 4. de la Sen, M., Ibeas, A.: ‘On the global asymptotic stability of switched linear time-varying systems with constant point delays’, Discret. Dyn. Nat. Soc., 2008, 2008, pp. 131.
    2. 2)
      • 26. Zhao, X.D., Zheng, X.L., Niu, B.et al.: ‘Adaptive tracking control for a class of uncertain switched nonlinear systems’, Automatica, 2015, 52, (1), pp. 185191.
    3. 3)
      • 31. Lin, C.M., Hsu, C.F.: ‘Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings’, IEEE Trans. Fuzzy Syst., 2004, 12, (5), pp. 733742.
    4. 4)
      • 34. Monahemi, M.M., Kristic, M.: ‘Control of wing rock motion using adaptive feedbak linearization’, J. Guid. Control Dyn., 1996, 19, (4), pp. 905912.
    5. 5)
      • 2. Banks, H.T., Smith, R.C.: ‘Hysteresis modeling in smart material systems’, J. Appl. Mech. Eng., 2000, 5, (1), pp. 3145.
    6. 6)
      • 19. Fu, J.: ‘Extended backstepping approach for a class of non-linear systems in generalised output feedback canonical form’, IET Control Theory Appl., 2009, 3, (8), pp. 10231032.
    7. 7)
      • 15. Hou, Y.Z., Dong, C.Y., Wang, Q.: ‘Stability analysis of switched linear systems with locally overlapped switching law’, J. Guid. Control Dyn., 2010, 33, (2), pp. 396403.
    8. 8)
      • 21. Ma, R.C., Zhao, J.: ‘Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings’, Automatica, 2010, 46, (11), pp. 18191823.
    9. 9)
      • 25. Niu, B., Zhao, J.: ‘Output tracking control for a class of switched non-linear systems with partial state constraints’, IET Control Theory Appl., 2013, 7, (4), pp. 623631.
    10. 10)
      • 16. Wang, Z.L., Wang, Q., Dong, C.: ‘Asynchronous H control for unmanned aerial vehicles: Switched polytopic system approach’, IEEE/CAA J. Autom. Sin., 2015, 2, (2), pp. 201216.
    11. 11)
      • 20. Wu, J.L.: ‘Stabilizing controllers design for switched nonlinear systems in strict-feedback form’, Automatica, 2009, 45, (4), pp. 10921096.
    12. 12)
      • 6. Huang, R., Lin, Y., Ge, S.et al.: ‘H stabilization of switched linear stochastic systems under dwell time constraints’, Int. J. Control, 2012, 85, (9), pp. 12091217.
    13. 13)
      • 29. Bechlioulis, C.P., Rovithakis, G.A.: ‘Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems’, Automatica, 2009, 45, (2), pp. 532538.
    14. 14)
      • 17. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: ‘Nonlinear and adaptive control design’ (Wiley, New York, 1995).
    15. 15)
      • 27. Liu, Y., Lin, Y., Huang, R.: ‘Decentralised adaptive output feedback control for interconnected nonlinear systems preceded by unknown hysteresis’, Int. J. Control, 2015, 88, (9), pp. 17121725.
    16. 16)
      • 32. Hsu, C.H., Lan, C.E.: ‘Theory of wing rock’, J. Aircr., 1985, 22, (10), pp. 920924.
    17. 17)
      • 22. Niu, B., Xiang, Z.R.: ‘State-constrained robust stabilisation for a class of high-order switched nonlinear systems’, IET Control Theory Appl., 2015, 9, (12), pp. 19011908.
    18. 18)
      • 12. Liu, J.X., Laghrouche, S., Wack, M.H.M.: ‘Adaptive-gain second-order sliding mode observer design for switching power converters’, Control Eng. Pract., 2014, 30, pp. 124131.
    19. 19)
      • 13. Liu, J.X., Laghrouche, S., Wack, M.: ‘Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications’, Int. J. Control, 2014, 69, (4), pp. 11171130.
    20. 20)
      • 11. Zhang, X.Y., Lin, Y., Wang, J.G.: ‘High-gain observer based decentralised output feedback control for interconnected nonlinear systems with unknown hysteresis input’, Int. J. Control, 2013, 8, (6), pp. 10461059.
    21. 21)
      • 14. Liu, Y.F., Yang, J.Y., Li, C.Z.: ‘Robust finite-time stability and stabilisation for switched linear parameter-varying systems and its application to bank-to-turn missiles’, IET Control Theory Appl., 2015, 9, (14), pp. 21712179.
    22. 22)
      • 8. Sang, Q., Tao, G.: ‘Adaptive control of piecewise linear systems: the state tracking case’, IEEE Trans. Autom. Control, 2012, 57, (2), pp. 522528.
    23. 23)
      • 33. Guglieri, G.: ‘A comprehensive analysis of wing rock dynamics for slender delta wing configurations’, Nonlinear Dyn., 2012, 69, (4), pp. 15591575.
    24. 24)
      • 28. Brokate, M., Sprekels, J.: ‘Hysteresis and phase transitions’ (Springer-Verlag, New York, 1996).
    25. 25)
      • 5. Lin, H., Antsaklis, P.: ‘Stability and stabilizability of switched linear systems: a survey of recent results’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 308322.
    26. 26)
      • 18. Zhang, X., Lin, Y.: ‘Adaptive output feedback tracking for a class of nonlinear systems’, Automatica, 2012, 48, (9), pp. 23722376.
    27. 27)
      • 23. Chiang, M.L., Fu, L.C.: ‘Adaptive stabilization of a class of uncertain switched nonlinear systems with backstepping control’, Automatica, 2014, 50, (8), pp. 21282135.
    28. 28)
      • 9. Su, C.Y., Wang, Q.Q., Chen, X.K.et al.: ‘Adaptive variable structure control of a class of nonlinear system with unknown Prandtl–Ishlinskii hysteresis’, IEEE Trans. Autom. Control, 2005, 50, (12), pp. 20692074.
    29. 29)
      • 30. Nguyen, L.T., Whipple, D., Brandon, J.M.: ‘Recent experiences of unsteady aerodynamic effect on aircraft dynamics at high angle of attack’. AGARD Conference Proceedings No. 386, Göttingen, Federal Republic of Germany, Paper No. 28, 1985.
    30. 30)
      • 24. Li, Z., Chen, J., Zhang, G.et al.: ‘Stabilising tracking of uncertain switched non-linear systems in semi-strict feedback form’, IET Control Theory Appl., 2012, 6, (4), pp. 588595.
    31. 31)
      • 1. Liberzon, D.: ‘Switching in systems and control’ (Birkhauser, Boston, MA, 2003).
    32. 32)
      • 7. Han, T.T., Ge, S.S., Lee, T.H.: ‘Adaptive neural control for a class of switched nonlinear systems’, Syst. Control Lett., 2009, 58, (2), pp. 109118.
    33. 33)
      • 3. Gu, G.Y., Zhu, L.M., Su, C.Y.: ‘Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 15831595.
    34. 34)
      • 10. Zhou, J., Wen, C.Y., Li, T.S.: ‘Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity’, IEEE Trans. Autom. Control, 2012, 57, (10), pp. 26272633.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1335
Loading

Related content

content/journals/10.1049/iet-cta.2015.1335
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading