http://iet.metastore.ingenta.com
1887

Finite-time synchronisation of neural networks with discrete and distributed delays via periodically intermittent memory feedback control

Finite-time synchronisation of neural networks with discrete and distributed delays via periodically intermittent memory feedback control

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, finite-time synchronisation between two chaotic systems with discrete and distributed delays is investigated by using periodically intermittent memory feedback control. Based on finite-time stability theory, some novel and effective synchronisation criteria of intermittent control are derived by means of linear matrix inequalities and differential inequality techniques. Furthermore, a necessary condition of finite-time synchronisation of intermittent control is given for neural networks with discrete and distributed delays. A numerical example on two chaotic neural networks shows the effectiveness and correctness of the derived theoretical results. In addition, a secure communication synchronisation problem is presented to demonstrate practical effectiveness of the proposed method.

References

    1. 1)
      • 1. Pecora, L.M., Carroll, T.L.: ‘Synchronization in chaotic systems’, Phys. Rev. Lett., 1990, 64, pp. 821825.
    2. 2)
      • 2. Pecora, L.M., Carroll, T.L., Johnson, G.A., et al: ‘Fundamentals of synchronization in chaotic systems, concepts, and applications’, Chaos, 1997, 7, p. 520.
    3. 3)
      • 3. Chen, G., Dong, X.: ‘From chaos to order: methodologies, perspectives, and applications’ (World Scientific, Singapore, 1998).
    4. 4)
      • 4. Baccaletti, S., Kurths, J., Osipov, G., et al: ‘The synchronization of chaotic systems’, Phys. Rep., 2002, 366, pp. 1101.
    5. 5)
      • 5. Gualberto, S.P.: ‘Complete synchronization of strictly different chaotic systems’, J. Appl. Math., 2012, 2012, (2012), pp.113.
    6. 6)
      • 6. Yang, X., Cao, J., Long, Y., et al: ‘Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations’, IEEE Trans. Neural Netw., 2010, 21, (10), pp. 16561667.
    7. 7)
      • 7. Mahmoud, G., Mahmoud, E.: ‘Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems’, Nonlinear Dyn., 2010, 61, pp. 141152.
    8. 8)
      • 8. Wang, W., Peng, H., Li, L., et al: ‘Finite-time function projective synchronization in complex multi-links networks with time-varying delay’, Neural Process. Lett., 2015, 41, pp. 7188.
    9. 9)
      • 9. Sun, Y., Li, W., Ruan, J.: ‘Generalized outer synchronization between complex dynamical networks with time delay and noise perturbation’, Commun. Nonlinear Sci. Numer. Simul, 2013, 18, pp. 989998.
    10. 10)
      • 10. Yang, X., Cao, J., Lu, J.: ‘Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control’, IEEE Trans. Circuits Syst. I, 2012, 59, pp. 371384.
    11. 11)
      • 11. Wu, W., Zhou, W., Chen, T.: ‘Cluster synchronization of linearly coupled complex networks under pinning control’, IEEE Trans. Circuits Syst. I, 2009, 56, pp. 829839.
    12. 12)
      • 12. Zhang, W., Tang, Y., Miao, Q., et al: ‘Synchronization of stochastic dynamical networks under impulsive control with time delays’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (10), pp. 17581768.
    13. 13)
      • 13. Jiang, M., Wang, S., Mei, J.: ‘Finite-time synchronization control of a class of memristor-based recurrent neural networks’, Neural Netw., 2015, 63, pp. 133140.
    14. 14)
      • 14. Jiang, M., Mei, J., Hu, J.: ‘New results on exponential synchronization of memristor-based chaotic neural networks’, Neurocomputing, 2015, 156, pp. 6067.
    15. 15)
      • 15. Zhang, G., Shen, Y.: ‘Exponential stabilization of memristor-based chaotic neural networks with time-Varying delays via intermittent control’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, pp. 14311441.
    16. 16)
      • 16. Mei, J., Jiang, M., Wang, B., et al: ‘Exponential p-synchronization of non-autonomous Cohen-Grossberg neural networks with reaction-diffusion terms via periodically intermittent control’, Neural Process. Lett., 2014, 40, pp. 103126.
    17. 17)
      • 17. Hu, C., Yu, J., Jiang, H., et al: ‘Exponential synchronization of complex networks with finite distributed delays coupling’, IEEE Trans. Neural Netw., 2011, 22, pp. 19992010.
    18. 18)
      • 18. Liu, X., Chen, T.: ‘Cluster synchronization in directed networks via intermittent pinning control’, IEEE Trans. Neural Netw., 2011, 22, (7), pp. 10091020.
    19. 19)
      • 19. Mei, J., Jiang, M., Xu, W.: ‘Finite-time synchronization control of complex dynamical networks with time delay’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, pp. 24622478.
    20. 20)
      • 20. Mei, J., Jiang, M., Wang, X., et al: ‘Finite-time synchronization of drive-response systems via periodically intermittent adaptive control’, J. Franklin Inst., 2014, 351, pp. 26912710.
    21. 21)
      • 21. Liu, X., Chen, T.: ‘Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (1), pp. 113126.
    22. 22)
      • 22. Mei, J., Jiang, M., Wu, Z.et al.: ‘Periodically intermittent controlling for finite-time synchronization of complex dynamical networks’, Nonlinear Dyn., 2014, 79, (1), pp. 295305.
    23. 23)
      • 23. Fan, Y., Liu, H., Mei, J.: ‘Semi-global finite-time synchronization of complex dynamical networks via periodically intermittent control’, Abstract Appl. Anal., 2015, 2015, pp.112.
    24. 24)
      • 24. Yan, Z., Zhang, W., Zhang, G.: ‘Finite-time stability and stabilization of Itô stochastic systems with Markovian switching: mode-dependent parameters approach’, IEEE Trans. Autom. Control, 2015, 60, pp. 24282433.
    25. 25)
      • 25. Yan, Z., Zhang, G., Zhang, W.: ‘Finite-time stability and stabilization of linear Itô stochastic systems with state and control dependent noise’, Asian J. Control, 2013, 15, pp. 270281.
    26. 26)
      • 26. Shen, Y., Huang, Y.: ‘Uniformly observable and globally Lipschitzian nonlinear system admit global finite-time observers’, IEEE Trans. Autom. Control, 2009, 54, pp. 26212625.
    27. 27)
      • 27. Mei, J., Jiang, M., Wang, B., et al: ‘Finite-time parameter identification and adaptive synchronization between two chaotic neural networks’, J. Franklin Inst., 2013, 350, pp. 16171633.
    28. 28)
      • 28. Jiang, J., Wang, M., Mei, J.: ‘Finite-time structure identification and synchronization of drive-response systems with uncertain parameter’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, pp. 9991015.
    29. 29)
      • 29. Yin, J., Khoo, S., Man, Z., et al: ‘Finite-time stability and instability of stochastic nonlinear systems’, Automatica, 2011, 47, pp. 26712677.
    30. 30)
      • 30. Yang, X., Cao, J.: ‘Finite-time stochastic synchronization of complex networks’, Appl. Math. Model., 2010, 34, pp. 36313641.
    31. 31)
      • 31. Shen, J., Cao, J.: ‘Finite-time synchronization of coupled neural networks via discontinuous controllers’, Cogn Neurodyn., 2011, 5, pp. 373385.
    32. 32)
      • 32. Yu, W.: ‘Finite-time stabilization of three-dimensional chaotic systems based on CLF’, Phys. Lett. A, 2010, 374, pp. 30213024.
    33. 33)
      • 33. Wang, T., Zhao, S., Zhou, W., et al: ‘Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems’, ISA Trans., 2014, 53, pp. 11841190.
    34. 34)
      • 34. Yu, C., Jiang, J., Hu, H.: ‘Finite-time synchronization of delayed neural networks with Cohen-Grossberg type based on delayed feedback control’, Neurocomputing, 2014, 143, pp. 9096.
    35. 35)
      • 35. Huang, J., Li, C., Huang, T., et al: ‘Finite-time lag synchronization of delayed neural networks’, Neurocomputing, 2014, 139, pp. 145149.
    36. 36)
      • 36. Fang, W., Zhang, J., Cui, W., et al: ‘Finite-time cluster synchronisation of Markovian switching complex networks with stochastic perturbations’, IET Control Theory Appl., 2013, 8, pp. 3041.
    37. 37)
      • 37. Liu, Y., Wang, Z., Liu, X.: ‘Global exponential stability of generalized recurrent neural networks with discrete and distributed delays’, Neural Netw., 2006, 19, pp. 667675.
    38. 38)
      • 38. Wang, L., Xiao, F.: ‘Finite-time consensus problems for networks of dynamic agents’, IEEE Trans. Autom. Control, 2010, 55, pp. 950955.
    39. 39)
      • 39. Zhang, B., Lam, J., Xu, S.: ‘Stability analysis of distributed delay neural networks based on relaxed Lyapunov–Krasovskii functionals’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, pp.14801492.
    40. 40)
      • 40. Xia, Y., Yang, Z., Han, M.: ‘Lag synchronization of unknown chaotic delayed Yang–Yang-type fuzzy neural networks with noise perturbation based on adaptive control and parameter identification’, IEEE Trans. Neural Netw., 2009, 20, pp. 11651180.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1326
Loading

Related content

content/journals/10.1049/iet-cta.2015.1326
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address