http://iet.metastore.ingenta.com
1887

Stability of neutral type fractional delay systems and its relation with stability of time-delay and discrete systems

Stability of neutral type fractional delay systems and its relation with stability of time-delay and discrete systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The bounded-input bounded-output stability of fractional delay systems of neutral type is investigated in this study. The proposed method calculates the number of unstable poles of the system for each delay value. All time-delay intervals in time-delay space where system is stable are precisely determined. The stability of systems with not only indefinitely large values of time-delay, but also with multiple poles on the imaginary axis has been studied. The proposed method is employed for investigating the stability of a fractional delay system when its fractional orders approach to the integer numbers or zero. It is proved that simple case of neutral types and time-delay systems have the same conditions for the independent stability. Two numerical examples are provided to illustrate the proficiencies of the proposed method.

References

    1. 1)
      • 1. Vyhlídal, T., Lafay, J.F., Sipahi, R.: ‘Delay systems: from theory to numerics and applications’ (Advances in Delays and Dynamics, Springer, 2014).
    2. 2)
      • 2. Narang, A., Shah, S.L., Chen, T.: ‘Continuous-time model identification of fractional-order models with time delays’, IET Control Theory Appl., 2011, 5, (7), pp. 900912.
    3. 3)
      • 3. Feliu-Batlle, V., Rivas-Perez, R., Sanchez-Rodriguez, L.: ‘Fractional robust control of main irrigation canals with variable dynamic parameters’, Control Eng. Pract., 2007, 15, (6), pp. 673686.
    4. 4)
      • 4. Mesbahi, A., Haeri, M.: ‘Robust non-fragile fractional order PID controller for linear time invariant fractional delay systems’, J. Process Control, 2014, 24, (9), pp. 14891494.
    5. 5)
      • 5. Wei, Y., Chen, Y., Liang, S., et al: ‘A novel algorithm on adaptive backstepping control of fractional order systems’, Neurocomputing, 2015, 165, pp. 395402.
    6. 6)
      • 6. Wei, Y., Sun, Z., Hu, Y., et al: ‘On fractional order composite model reference adaptive control’, Int. J. Sys. Sci., 2016, 47, (11), pp. 25212531.
    7. 7)
      • 7. Bonnet, C., Partington, J.R.: ‘Analysis of fractional delay systems of retarded and neutral type’, Automatica, 2002, 38, (7), pp. 11331138.
    8. 8)
      • 8. Bonnet, C., Partington, J.R.: ‘Stabilization of some fractional delay systems of neutral type’, Automatica, 2007, 43, (12), pp. 20472053.
    9. 9)
      • 9. Nguyen, L.H.V., Bonnet, C.: ‘Stability analysis of fractional neutral time-delay systems with multiple chains of poles asymptotic to same points in the imaginary axis’. Proc. of 51st IEEE Conf. Decision Control, Maui, Hawaii, USA, 2012, pp. 49674972.
    10. 10)
      • 10. Akbari Moornani, K., Haeri, M.: ‘Necessary and sufficient conditions for BIBO-stability of some fractional delay systems of neutral type’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 125128.
    11. 11)
      • 11. Zhang, H., Cai, T., Wang, Y.: ‘On τ at-decomposition frequency-sweeping strategy to rational-order fractional systems with commensurate delays’, IET Control Theory Appl., 2014, 9, (5), pp. 723728.
    12. 12)
      • 12. Hale, J., Lunel, S.M.V.: ‘Strong stabilization of neutral functional differential equations’, IMA J. Math. Control Inf., 2002, 19, (1–2), pp. 523.
    13. 13)
      • 13. Olgac, N., Sipahi, R.: ‘A practical method for analyzing the stability of neutral type LTI-time delayed systems’, Automatica, 2004, 40, (5), pp. 847853.
    14. 14)
      • 14. Fioravanti, A.R., Bonnet, C., Özbay, H., et al: ‘A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems’, Automatica, 2012, 48, (11), pp. 28242830.
    15. 15)
      • 15. Bonnet, C., Fioravanti, A.R., Partington, J.R.: ‘Stability of neutral systems with multiple delays and poles asymptotic to the imaginary axis’, SIAM J. Control Optim., 2011, 49, (2), pp. 498516.
    16. 16)
      • 16. Jiangbo, Z., Junzheng, W., Shoukun, W.: ‘Fractional order control to the electrohydraulic system in insulator fatigue test device’, Mechatronics, 2013, 23, (7), pp. 828839.
    17. 17)
      • 17. Mesbahi, A., Haeri, M.: ‘Stable regions in the parameter space of delays for LTI factional-order systems with two delays’, Signal Process., 2015, 107, pp. 415424.
    18. 18)
      • 18. Hwang, C., Cheng, Y.C.: ‘A numerical algorithm for stability testing of fractional delay systems’, Automatica, 2006, 42, (5), pp. 825831.
    19. 19)
      • 19. Akbari Moornani, K., Haeri, M.: ‘On robust stability of LTI fractional order delay systems of retarded and neutral type’, Automatica, 2010, 46, (2), pp. 362368.
    20. 20)
      • 20. Mesbahi, A., Haeri, M.: ‘The effect of fractional-order on oscillatory behavior of scalar fractional delay systems of neutral type’. 6th IFAC Workshop on Fractional Differentiation and its Applications, Grenoble, France, 2013, pp. 475480.
    21. 21)
      • 21. Li, X.G., Niculescu, S.I., Çela, A., et al: ‘On computing Puiseux series for multiple imaginary characteristic roots of LTI systems with commensurate delays’, IEEE Trans. Autom. Control, 2013, 58, (5), pp. 13381343.
    22. 22)
      • 22. Li, X.G., Niculescu, S.I., Çela, A., et al: ‘Invariance properties for a class of quasipolynomials’, Automatica, 2014, 50, (3), pp. 890895.
    23. 23)
      • 23. Mesbahi, A., Haeri, M.: ‘Stability of linear time invariant fractional delay systems of retarded type in the space of delay parameters’, Automatica, 2013, 49, (5), pp. 12871294.
    24. 24)
      • 24. Bonnet, C., Fioravanti, A.R., Partington, J.R.: ‘H∞-stability analysis of fractional delay systems of neutral type’, SIAM J. Control Optim., 2016, 54, (2), pp. 740759.
    25. 25)
      • 25. Nasiri, H., Haeri, M.: ‘How BIBO stability of LTI fractional-order time delayed systems relates to their approximated integer-order counterparts’, IET Control Theory Appl., 2014, 8, (8), pp. 598605.
    26. 26)
      • 26. Gao, Z.: ‘A computing method on stability intervals of time-delay for fractional-order retarded systems with commensurate time-delay’, Automatica, 2014, 50, (6), pp. 16111616.
    27. 27)
      • 27. Partington, J.R., Bonnet, C.: ‘H and BIBO stabilization of delay systems of neutral type’, Syst. Control Lett., 2004, 52, (3–4), pp. 283288.
    28. 28)
      • 28. Abusaksaka, A.B., Partington, J.R.: ‘BIBO stability of some classes of delay systems and fractional systems’, Syst. Control Lett., 2014, 64, pp. 4346.
    29. 29)
      • 29. Rekasius, Z.V.: ‘A stability test for systems with delays’. Proc. Joint Automatic Control Conf., Paper No. TP9-A, 1980.
    30. 30)
      • 30. Öztürk, N., Uraz, A.: ‘An analysis stability test for a certain class of distributed parameter systems with delays’, IEEE Trans. Circuits Syst., 1985, 34, (4), pp. 393396.
    31. 31)
      • 31. Matignon, D.: ‘Stability properties for generalized fractional differential systems’. ESAIM Proc. Fractional Differential Systems Models Methods and Applications, 1998, vol. 5, pp. 145158.
    32. 32)
      • 32. Grimaldi, R.P.: ‘Discrete and combinatorial mathematics: an applied introduction’ (Addison-Wesley, 2003, 5th Edn.).
    33. 33)
      • 33. Mesbahi, A., Haeri, M.: ‘Conditions on decomposing linear systems with more than one matrix to block triangular or diagonal form’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 233239.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1325
Loading

Related content

content/journals/10.1049/iet-cta.2015.1325
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address