access icon free Adaptive neural network control for active suspension system with actuator saturation

This study investigates adaptive neural network (NN) state feedback control and robust observation for an active suspension system that considers parametric uncertainties, road disturbances and actuator saturation. An adaptive radial basis function neural network is adopted to approximate uncertain non-linear functions in the dynamic system. An auxiliary system is designed and presented to deal with the effects of actuator saturation. In addition, since it is difficult to obtain accurate states in practice, an NN observer is developed to provide state estimation using the measured input and output data of the system. The state observer-based feedback control parameters with saturated inputs are optimised by the particle swarm optimisation scheme. Furthermore, the uniformly ultimately boundedness of all the closed-loop signals is guaranteed through rigorous Lyapunov analysis. The simulation results further demonstrate that the proposed controller can effectively suppress car body vibrations and offers superior control performance despite the existence of non-linear dynamics and control input constraints.

Inspec keywords: particle swarm optimisation; adaptive control; observers; neurocontrollers; Lyapunov methods; nonlinear control systems; closed loop systems; state feedback; suspensions (mechanical components); robust control

Other keywords: car body vibrations; uncertain nonlinear functions; state estimation; Lyapunov analysis; robust observation; adaptive radial basis function neural network; NN observer; particle swarm optimisation scheme; adaptive neural network state feedback control; actuator saturation; active suspension system; state observer-based feedback control parameters; the closed-loop signals

Subjects: Transportation system control; Nonlinear control systems; Self-adjusting control systems; Neurocontrol; Mechanical components; Optimisation techniques; Stability in control theory

References

    1. 1)
      • 49. Chen, M., Ge, S.S., Ren, B.: ‘Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints’, Automatica, 2011, 47, (3), pp. 452465.
    2. 2)
      • 53. Qin, Y., Dong, M., Langari, R., et al: ‘Adaptive hybrid control of vehicle semi-active suspension based on road profile estimation’, Shock Vib., 2015, 2015, p. 636739.
    3. 3)
      • 30. Abdollahi, F., Talebi, H.A., Patel, R.V.: ‘A stable neural network-based observer with application to flexible-joint manipulators’, IEEE Trans. Neural Netw., 2006, 17, (1), pp. 118129.
    4. 4)
      • 16. Du, H., Lam, J., Sze, K.Y.: ‘Non-fragile output feedback H∞ vehicle suspension control using genetic algorithm’, Eng. Appl. Artif. Intell., 2003, 16, (7), pp. 667680.
    5. 5)
      • 34. Zhou, B., Lam, J., Duan, G.R.: ‘An ARE approach to semi-global stabilization of discrete-time descriptor linear systems with input saturation’, Syst. Control Lett., 2009, 58, (8), pp. 609616.
    6. 6)
      • 43. Tarbouriech, S., Turner, M.: ‘Anti-windup design: an overview of some recent advances and open problems’, IET Control Theory Applic., 2009, 3, (1), pp. 119.
    7. 7)
      • 32. Dixit, R.K., Buckner, G.D.: ‘Sliding mode observation and control for semiactive vehicle suspensions’, Veh. Syst. Dyn., 2005, 43, (2), pp. 83105.
    8. 8)
      • 22. Zirkohi, M.M., Lin, T.-C.: ‘Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system’, Nonlinear Dyn., 2015, 79, (1), pp. 513526.
    9. 9)
      • 24. Sun, W., Gao, H., Kaynak, O.: ‘Adaptive backstepping control for active suspension systems with hard constraints’, IEEE/ASME Trans. Mechatronics, 2013, 18, (3), pp. 10721079.
    10. 10)
      • 28. Zapateiro, M., Luo, N., Karimi, H.R., et al: ‘Vibration control of a class of semi-active suspension system using neural network and backstepping techniques’, Mech. Syst. Signal Process., 2009, 23, (6), pp. 19461953.
    11. 11)
      • 9. Alleyne, A., Hedrick, J.K.: ‘Nonlinear adaptive control of active suspensions’, IEEE Trans. Control Syst. Technology, 1995, 3, (1), pp. 94101.
    12. 12)
      • 18. Liu, Y.J., Tong, S.: ‘Adaptive fuzzy control for a class of unknown nonlinear dynamical systems’, Fuzzy Sets Syst., 2015, 263, pp. 4970.
    13. 13)
      • 40. Wang, H., Liu, X., Liu, K.: ‘Adaptive neural data-based compensation control of non-linear systems with dynamic uncertainties and input saturation’, IET Control Theory Applic., 2015, 9, (7), pp. 10581065.
    14. 14)
      • 15. Li, P., Lam, J., Cheung, K.C.: ‘Velocity-dependent multi-objective control of vehicle suspension with preview measurements’, Mechatronics, 2014, 24, (5), pp. 464475.
    15. 15)
      • 13. Zhao, F., Dong, M., Qin, Y., et al: ‘Adaptive neural-sliding mode control of active suspension system for camera stabilization’, Shock Vib., 2015, 2015, Article ID: 542364.
    16. 16)
      • 41. Sajjadi-Kia, S., Jabbari, F.: ‘Modified anti-windup compensators for stable plants’, IEEE Trans. Autom. Control, 2009, 54, (8), pp. 19341939.
    17. 17)
      • 25. Jin, Y., Yu, D.J.: ‘Adaptive neuron control using an integrated error approach with application to active suspensions’, Int. J. Automot. Technol., 2008, 9, (3), pp. 329335.
    18. 18)
      • 7. Chen, S., He, R., Liu, H., et al: ‘Probe into necessity of active suspension based on LQG control’, Physics Procedia, 2012, 25, pp. 932938.
    19. 19)
      • 12. Deshpande, V.S., Mohan, B., Shendge, P.D., et al: ‘Disturbance observer based sliding mode control of active suspension systems’, J. Sound Vib., 2014, 333, (11), pp. 22812296.
    20. 20)
      • 39. Yan, X., Chen, M., Wu, Q., et al: ‘Dynamic surface control for a class of stochastic non-linear systems with input saturation’, IET Control Theory Applic., 2016, 10, (1), pp. 3543.
    21. 21)
      • 36. Sun, W., Gao, H., Kaynak, O.: ‘Vibration isolation for active suspensions with performance constraints and actuator saturation’, IEEE/ASME Trans. Mechatronics, 2015, 20, (2), pp. 675683.
    22. 22)
      • 33. Gayaka, S., Lu, L., Yao, B.: ‘Global stabilization of a chain of integrators with input saturation and disturbances: A new approach’, Automatica, 2012, 48, (7), pp. 13891396.
    23. 23)
      • 52. Doumiati, M., Victorino, A., Charara, A., et al: ‘Estimation of road profile for vehicle dynamics motion: experimental validation’. American Control Conf., San Francisco, CA, 2011, pp. 52375242.
    24. 24)
      • 48. Ge, S.S., Wang, C.: ‘Adaptive neural control of uncertain MIMO nonlinear systems’, IEEE Trans. Neural Netw., 2004, 15, (3), pp. 674692.
    25. 25)
      • 17. Demir, O., Keskin, I., Cetin, S.: ‘Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach’, Nonlinear Dyn., 2012, 67, (3), pp. 21392151.
    26. 26)
      • 19. Liu, Y.J., Tong, S.: ‘Adaptive fuzzy identification and control for a class of nonlinear pure-feedback MIMO systems with unknown dead zones’, IEEE Trans. Fuzzy Syst., 2015, 23, (5), pp. 13871398.
    27. 27)
      • 50. Raghavan, S., Karl Hedrick, J.: ‘Observer design for a class of nonlinear systems’, Int. J. Control, 1994, 59, (2), pp. 515528.
    28. 28)
      • 42. Zhao, Y., Sun, W., Gao, H.: ‘Robust control synthesis for seat suspension systems with actuator saturation and time-varying input delay’, J. Sound Vib., 2010, 329, (21), pp. 43354353.
    29. 29)
      • 26. Chen, M., Jiang, B., Zou, J., et al: ‘Robust adaptive tracking control of the underwater robot with input nonlinearity using neural networks’, Int. J. Comput. Intell. Syst., 2010, 3, (5), pp. 646655.
    30. 30)
      • 37. Saifia, D., Chadli, M., Labiod, S.: ‘H∞ control of multiple model subject to actuator saturation: application to quarter-car suspension system’, Analog Integr. Circuits Signal Process., 2011, 69, (1), pp. 8190.
    31. 31)
      • 45. Do, A.L., Silva, J.M.Jr., Sename, O., et al: ‘Control design for LVP systems with input saturation and state constraints: An application to a semi-active suspension’. 2011 50th IEEE Conf. on Decision and Control and European Control Conf. (CDC-ECC), Orlando, Florida, 2011, pp. 34163421.
    32. 32)
      • 21. Du, H., Zhang, N.: ‘Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint’, IEEE Trans Fuzzy Syst., 2009, 17, (2), pp. 343356.
    33. 33)
      • 31. Khalil, H.K., Praly, L.: ‘High-gain observers in nonlinear feedback control’, Int. J. Robust Nonlinear Control, 2014, 24, (6), pp. 9931015.
    34. 34)
      • 5. Yao, J., Jiao, Z., Ma, D., et al: ‘High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties’, IEEE/ASME Trans. Mechatronics, 2014, 19, (2), pp. 633641.
    35. 35)
      • 51. Imine, H., Delanne, Y., M'sirdi, N.K.: ‘Road profile input estimation in vehicle dynamics simulation’, Veh. Syst. Dyn., 2006, 44, (4), pp. 285303.
    36. 36)
      • 44. Sun, W., Zhao, Z., Gao, H.: ‘Saturated adaptive robust control for active suspension systems’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 38893896.
    37. 37)
      • 2. Appleyard, M., Wellstead, P.E.: ‘Active suspensions: some background’, IET Control Theory Applic., 1995, 142, (2), pp. 123128.
    38. 38)
      • 46. Kim, C., Ro, P.I.: ‘A sliding mode controller for vehicle active suspension systems with nonlinearities’, Proc. Inst. Mech. Eng. D J. Autom. Eng., 1998, 212, (2), pp. 7992.
    39. 39)
      • 14. Moradi, M., Fekih, A.: ‘Adaptive PID-sliding-mode fault-tolerant control approach for vehicle suspension systems subject to actuator faults’, IEEE Trans. Veh. Technol., 2014, 63, (3), pp. 10411054.
    40. 40)
      • 8. Li, H., Jing, X., Karimi, H.R.: ‘Output-feedback-based control for vehicle suspension systems with control delay’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 436446.
    41. 41)
      • 35. Chen, M., Ren, B.B., Wu, Q.X., et al: ‘Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer’, Sci. China Inf. Sci., 2015, 58, (7), pp. 112.
    42. 42)
      • 29. Lin, J., Lian, R.-J.: ‘Intelligent control of active suspension systems’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 618628.
    43. 43)
      • 3. Van der Sande, T.P.J., Gysen, B.L.J., Besselink, I.J.M., et al: ‘Robust control of an electromagnetic active suspension system: Simulations and measurements’, Mechatronics, 2013, 23, (2), pp. 204212.
    44. 44)
      • 47. Polycarpou, M.M.: ‘Stable adaptive neural control scheme for nonlinear systems’, IEEE Trans. Autom. Control, 1996, 41, (3), pp. 447451.
    45. 45)
      • 4. Cao, J., Liu, H., Li, P., et al: ‘State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (3), pp. 392405.
    46. 46)
      • 10. Li, P., Lam, J., Cheung, K.C.: ‘Multi-objective control for active vehicle suspension with wheelbase preview’, J. Sound Vib., 2014, 333, (21), pp. 52695282.
    47. 47)
      • 6. Li, H., Gao, H., Liu, H.: ‘Robust quantised control for active suspension systems’, IET Control Theory Applic., 2011, 5, (17), pp. 19551969.
    48. 48)
      • 20. Liu, Y.J., Gao, Y., Tong, S., et al: ‘Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone’, IEEE Trans. Fuzzy Syst., 2015, 24, (1), pp. 1628.
    49. 49)
      • 27. Wen, G.X., Chen, C.L., Liu, Y.J., et al: ‘Neural-network-based adaptive leader-following consensus control for second-order non-linear multi-agent systems’, IET Control Theory Applic., 2015, 9, (13), pp. 19271934.
    50. 50)
      • 1. Cao, D., Song, X., Ahmadian, M.: ‘Editors’ perspectives: road vehicle suspension design, dynamics, and control’, Veh. Syst. Dyn., 2011, 49, (1-2), pp. 328.
    51. 51)
      • 23. Gao, Y., Liu, Y.J.: ‘Adaptive fuzzy optimal control using direct heuristic dynamic programming for chaotic discrete-time system’, J. Vib. Control, 2014, 22, p. 1077546314534286.
    52. 52)
      • 54. Qin, Y., Dong, M., Zhao, F., et al: ‘Road profile classification for vehicle semi-active suspension system based on Adaptive Neuro-Fuzzy Inference System’. Proc. 54th IEEE Conf. on Control Decision, Osaka, Japan, December 2015, pp. 15331538.
    53. 53)
      • 38. Gu, Z., Fei, S., Zhao, Y., et al: ‘Robust control of automotive active seat-suspension system subject to actuator saturation’, J. Dyn. Syst. Meas. Control, 2014, 136, (4), p. 041022.
    54. 54)
      • 11. Niksefat, N., Sepehri, N.: ‘Design and experimental evaluation of a robust force controller for an electro-hydraulic actuator via quantitative feedback theory’, Control Eng. Pract., 2000, 8, (12), pp. 13351345.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1317
Loading

Related content

content/journals/10.1049/iet-cta.2015.1317
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading