© The Institution of Engineering and Technology
In this study, two novel iterative algorithms are presented to solve the Lyapunov matrix equations appearing in discretetime periodic linear systems. In both algorithms, a weighted combination of the estimation in the last and the current steps is used to update the estimation of the unknown matrices. It is shown that the sequences generated by the proposed algorithms with zero initial conditions monotonically converge to the unique positive definite solution of the periodic Lyapunov matrix equation if the associated system is asymptotically stable. Finally, a numerical example is used to illustrate the effectiveness of the proposed algorithms.
References


1)

5. Bittanti, S., Colaneri, P., De Nicolao, G.: ‘The difference periodic Riccati equation for the periodic prediction problem’, IEEE Trans. Autom. Control, 1988, 33, (8), pp. 706–712.

2)

18. Borno, I., Gajic, Z.: ‘Parallel algorithm for solving coupled algebraic Lyapunov equations of discretetime jump linear systems’, Comput. Math. Appl., 1995, 55, (7), pp. 1–4.

3)

4. Halanay, A., Ionescu, V.: ‘Timevarying discrete linear systems’ (Birkauser, 1994).

4)

16. Bittanti, S., Colaneri, P.: ‘Periodic systems: filtering and control’ (SpringerVerlag, 2008).

5)

19. Kantorovich, L., Akilov, G.: ‘Functional analysis in normed spaces’ (Macmillan, New York, 1964).

6)

2. Zhou, B., Duan, G.R., Lin, Z.L.: ‘A parametric periodic Lyapunov equation with application in semiglobal stabilization of discretetime periodic systems subject to actuator saturation’, Automatica, 2011, 47, (2), pp. 316–325.

7)

6. Byers, R., Rhee, N.: ‘.

8)

11. Zhou, B., Duan, G.R., Li, Z.Y.: ‘Gradient based iterative algorithm for solving coupled matrix equations’, Syst. Control Lett., 2009, 6, (2), pp. 327–333.

9)

7. Hench, J.J., Laub, A.J.: ‘Numerical solution of the discretetime periodic Riccati equation’, IEEE Trans. Autom. Control, 1994, 39, (6), pp. 1197–1210.

10)

9. Ding, F., Chen, T.: ‘On iterative solutions of general coupled matrix equations’, SIAM J. Control Optim., 2006, 44, (6), pp. 2269–2284.

11)

15. Hajarian, M.: ‘Developing BiCOR and CORS methods for coupled Sylvestertranspose and periodic Sylvester matrix equations’, Appl. Math. Model., 2015, 39, (19), pp. 6073–6084.

12)

8. Sreedhar, J., Van Dooren, P.: ‘Periodic Schur form and some matrix equations’, Math. Res., 1994, 77, pp. 339–339.

13)

14. Hajarian, M.: ‘Matrix GPBiCG algorithms for solving the general coupled matrix equations’, IET Control Theory Appl., 2015, 9, (1), pp. 74–81.

14)

17. Zhang, H.: ‘Reducedrank gradientbased algorithms for generalized coupled Sylvester matrix equations and its applications’, J. Comput. Math. Appl., 2015, 70, (8), pp. 2049–2062.

15)

12. Wu, A.G., Duan, G.R.: ‘New iterative algorithms for solving coupled Markovian jump Lyapunov equations’, IEEE Trans. Autom. Control, 2015, 6, (2), pp. 289–294.

16)

13. Dehghan, M., Hajarian, M.: ‘The general coupled matrix equations over generalized bisymmetric matrices’, Linear Algebr. Appl., 2010, 432, (6), pp. 1531–1552.

17)

3. Varga, A.: ‘Solution of positive periodic discrete Lyapunov equations with applications to the balancing of periodic systems’. European Control Conf., Belgium, 1997, pp. 3794–3799.

18)

10. Ding, F., Chen, T.W.: ‘Iterative leastsquares solutions of coupled Sylvester matrix equations’, Syst. Control Lett., 2005, 52, (2), pp. 95–107.

19)

1. Varga, A.: ‘Periodic Lyapunov equations: some applications and new algorithms’, Int. J. Control, 1997, 67, (1), pp. 69–88.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2015.1313
Related content
content/journals/10.1049/ietcta.2015.1313
pub_keyword,iet_inspecKeyword,pub_concept
6
6