http://iet.metastore.ingenta.com
1887

Design of robust fractional-order lead–lag controller for uncertain systems

Design of robust fractional-order lead–lag controller for uncertain systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a new method for designing fractional-order robust lead–lag controllers in order to ensure robust stability in uncertain systems with unstructured uncertainty, has been presented. In this method, at first by the use of pole placement and solving Diophantine equation, a fractional-order controller, which has a new form, is designed in order to stabilise the nominal system. Then a constrained optimisation problem is solved, in which, the cost function consists of the numerator and denominator coefficients of the proposed fractional-order controller and the constraints are the robust stability conditions. Finally, the parameters of the robust fractional-order controller are acquired. This method is implemented on an unstable system and simulation results are presented.

References

    1. 1)
      • 1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.M.: ‘Theory and application of fractional differential equations’ (Elsevier, Amsterdam, 2006).
    2. 2)
      • 2. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, San Diego, 1999).
    3. 3)
      • 3. Podlubny, I.: ‘Fractional-order systems and PIλDμ controllers’, IEEE Trans. Autom. Control, 1999, 1, (44), pp. 208214.
    4. 4)
      • 4. Yue, Y., Wu, B., Zhang, R., et al: ‘A novel fractional order PID control method of electromagnetic navigation intelligent car’. 27th Chinese Control and Decision Conf., China, Qingdao, 2015, pp. 39483951.
    5. 5)
      • 5. Hue-fang, W., Qui-sheng, H., Zhi-cheng, Z., et al: ‘A design method of fractional order PIλDμ controller for higher order systems’. 34th Chinese Control Conf., China, Hangzhou, 2015, pp. 272277.
    6. 6)
      • 6. Zhong, J., Li, L.: ‘Tuning fractional-order PIλDμ controllers for a solid-core magnetic bearing system’, IEEE Trans. Control Syst. Technol., 2015, 4, (23), pp. 16481656.
    7. 7)
      • 7. De-Jin, W., Xue, C.: ‘Turning of fractional-order phase-lead compensators: A graphical approach’. 29th Chinese Control Conf., China, Beijing, 2010, pp. 18851890.
    8. 8)
      • 8. Monje, C.A., Vinagre, B.M., Feliu, V., et al: ‘Tuning and auto-tuning of fractional-order controllers for industry applications’, Control Eng. Pract., 2008, 16, (16), pp. 798812.
    9. 9)
      • 9. Tavazoei, M.S., Tavakkoli-Kakhki, M.: ‘Compensation by fractional-order phase-lead/lag compensators’, IET Control Theory Appl., 2014, 8, (8), pp. 319329.
    10. 10)
      • 10. Vinagre, B.M., Feliu, V.: ‘Optimal fractional controllers for rational order systems: a special case of the Wiener-Hopf spectral factorization method’, IEEE Trans. Autom. Control, 2007, 5, (52), pp. 23852389.
    11. 11)
      • 11. Necaibia, A., Ladaci, S., Bouraiou, A., et al: ‘Optimal auto-tuning of fractional order PIλDμ controller for a DC motor speed using Extremum seeking’. Int. Conf. on Fractional Differentiation and its Applications, Italy, Catania, 2014, pp. 16.
    12. 12)
      • 12. Zhu, D., Liu, L., Liu, C.: ‘Optimal fractional-order PID control of chaos in the fractional-order BUCK converter’. Nineth IEEE Conf. on Industrial Electronics and Applications, China, Hangzhou, 2014, pp. 787791.
    13. 13)
      • 13. Ladaci, S., Charef, A.: ‘On fractional adaptive control’, Nonlinear Dyn., 2006, 43, (43), pp. 365378.
    14. 14)
      • 14. Ladaci, S., Loiseau, J.J., Charef, A.: ‘Adaptive internal model control with fractional-order parameter’, Int. J. Adaptive Control Signal Process., 2010, 11, (24), pp. 944960.
    15. 15)
      • 15. Ladaci, S., Bensafia, Y.: ‘Fractional order self-tuning control’. 13th IEEE Int. Conf. on Industrial Informatics, England, Cambridge, 2015, pp. 544549.
    16. 16)
      • 16. Sabura Banu, U., Lakshmanaprabu, S.K.: ‘Adaptive multi-loop fractional order PID controller tuning using Bat colony optimization for quadruple tank process’. Int. Conf. on Robotics, Automation, Control and Embedded Systems, 2015, pp. 18.
    17. 17)
      • 17. Monje, C.A., Vinagre, B.M., Feliu, V., et al: ‘Fractional-order systems and controls, fundamentals and applications’ (Springer, London, 2010).
    18. 18)
      • 18. Jianyu, L., Jun-Guo, L., Zongli, L.: ‘Robust stabilization of fractional-order interval systems via a fractional-order PID controller’. Proc. of the 30th Chinese Control Conf., China, Beijing, 2011, pp. 64986503.
    19. 19)
      • 19. Moornani, K.A., Haeri, M.: ‘Robust stability testing function and Kharitonov-like theorem for fractional-order interval systems’, IET Control Theory Appl., 2010, 10, (4), pp. 20972108.
    20. 20)
      • 20. Liao, Z., Peng, C., Li, W., et al: ‘Robust stability analysis for a class of fractional-order systems with uncertain parameters’, J. Franklin Inst., 2011, 6, (348), pp. 11011113.
    21. 21)
      • 21. Tan, N., Ozguven, O.F., Ozyetkin, M.M.: ‘Robust stability analysis of fractional-order interval polynomials’, ISA Trans., 2009, 2, (48), pp. 166172.
    22. 22)
      • 22. Jiao, Z., Zhang, Y.: ‘Robust stability for fractional-order systems with structured and unstructured uncertainties’, Comput. Math. Appl., 2012, 10, (64), pp. 32583266.
    23. 23)
      • 23. Chen, L., Wu, R., He, Y., et al: ‘Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties’, Appl. Math. Comput., 2015, 257, pp. 274284.
    24. 24)
      • 24. Valerio, D., Costa, J.: ‘Introduction to single-input, single-output fractional control’, IET Control Theory Appl., 2011, 8, (5), pp. 10331057.
    25. 25)
      • 25. Doyle, J., Francis, B., Tannenbaum, A.: ‘Feedback control theory’ (Mcmillan Publishing, California, 1990).
    26. 26)
      • 26. Astrom, K.J., Wittenmark, B.: ‘Adaptive control’ (Addison-Wesley Publishing Company, Mineola, 1995).
    27. 27)
      • 27. Green, M., Limebeer, D.: ‘Linear robust control’ (Courier Corporation, California, 2012).
    28. 28)
      • 28. Dong, X., Wang, J., Zhou, Y.: ‘On nonlocal problems for fractional differential equations in Banach spaces’, Opuscula Math., 2011, 3, (31), pp. 341357.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1293
Loading

Related content

content/journals/10.1049/iet-cta.2015.1293
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address