Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Online fault compensation control based on policy iteration algorithm for a class of affine non-linear systems with actuator failures

In this study, a novel online fault compensation control scheme based on policy iteration (PI) algorithm is developed for a class of affine non-linear systems with actuator failures. The control scheme consists of a PI algorithm and a fault compensator. For fault-free dynamic models, the PI algorithm is developed to solve the Hamilton–Jacobi–Bellman equation by constructing a critic neural network, and then the approximate optimal control policy can be derived directly. Alternatively, the actuator failure is reconstructed adaptively to achieve online fault compensation without the fault detection and isolation mechanism. The closed-loop system is proved to be asymptotically stable via Lyapunov's direct method. Two numerical simulation examples are given to demonstrate the effectiveness of the proposed fault compensation control scheme.

References

    1. 1)
      • 11. Staroswiecki, M., Yang, H., Jiang, B.: ‘Progressive accommodation of parametric faults in linear quadratic control’, Automatica, 2007, 43, (12), pp. 20702076.
    2. 2)
      • 7. Guo, Y., Jiang, B., Shi, P.: ‘Delay-dependent adaptive reconfiguration control in the presence of input saturation and actuator faults’, Int. J. Innov. Comput. Inf. Control, 2010, 6, (4), pp. 18731882.
    3. 3)
      • 28. Wang, D., Liu, D., Li, H.: ‘Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems’, IEEE Trans. Autom. Sci. Eng., 2014, 11, (2), pp. 627632.
    4. 4)
      • 33. Liu, D., Wang, D., Zhao, D., et al: ‘Neural-network-based optimal control for a class of unknown discrete-time nonlinear systems using globalized dual heuristic programming’, IEEE Trans. Autom. Sci. Eng., 2012, 9, (3), pp. 628634.
    5. 5)
      • 40. Feng, C., Lu, Z., Jantsch, A., et al: ‘A reconfigurable fault-tolerant deflection routing algorithm based on reinforcement learning for network-on-chip’, Proc. Third Int. Workshop on Network on Chip Architectures, Atlanta, GA, USA, December 2010, pp. 1116.
    6. 6)
      • 4. Wang, R., Jing, H., Karimi, H., et al: ‘Robust fault-tolerant H control of active suspension systems with finite-frequency constraint’, Mech. Syst. Signal Process., 2015, 62, pp. 341355.
    7. 7)
      • 24. Yoo, S.: ‘Fault detection and accommodation of a class of nonlinear systems with unknown multiple time-delayed faults’, Automatica, 2014, 50, (1), pp. 255261.
    8. 8)
      • 23. Yang, G., Wang, H.: ‘Fault detection and isolation for a class of uncertain state-feedback fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2015, 23, (1), pp. 139151.
    9. 9)
      • 44. DeLima, P., Yen, G.: ‘Accommodating controller malfunctions through fault tolerant control architecture’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (2), pp. 706722.
    10. 10)
      • 19. Pertew, A., Marquez, H., Zhao, Q.: ‘LMI-based sensor fault diagnosis for nonlinear Lipschitz systems’, Automatica, 2007, 43, (8), pp. 14641469.
    11. 11)
      • 30. Zhang, H., Song, R., Wei, Q., et al: ‘Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming’, IEEE Trans. Neural Netw., 2011, 22, (12), pp. 18511862.
    12. 12)
      • 31. Zhang, H., Zhang, J., Yang, G., et al: ‘Leader-based optimal coordination control for the consensus problem of multiagent differential games via fuzzy adaptive dynamic programming’, IEEE Trans. Fuzzy Syst., 2015, 23, (1), pp. 152163.
    13. 13)
      • 3. Xiao, B., Hu, Q., Zhang, Y.: ‘Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation’, IEEE Trans. Control Syst. Technol., 2012, 20, (6), pp. 16051612.
    14. 14)
      • 12. Staroswiecki, M., Berdjag, D.: ‘A general fault tolerant linear quadratic control strategy under actuator outages’, Int. J. Syst. Sci., 2010, 41, (8), pp. 971985.
    15. 15)
      • 18. Liao, F., Wang, J., Yang, G.: ‘Reliable robust flight tracking control: an LMI approach’, IEEE Trans. Control Syst. Technol., 2002, 10, (1), pp. 7689.
    16. 16)
      • 17. Hu, X., Karimi, H., Wu, L., et al: ‘Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles’, IET Control Theory Appl., 2014, 8, (13), pp. 11471153.
    17. 17)
      • 16. Patan, K.: ‘Neural network-based model predictive control: fault tolerance and stability’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 11471155.
    18. 18)
      • 20. Liang, Y., Xu, S.: ‘Reliable control of nonlinear systems via variable structure scheme’, IEEE Trans. Autom. Control, 2006, 51, (10), pp. 17211726.
    19. 19)
      • 14. Staroswiecki, M.: ‘Fault tolerant control: the pseudo-inverse method revisited’. 16th IFAC World Congress, 2005, vol. 2, pp. 48.
    20. 20)
      • 6. Hwang, I., Kim, S., Kim, Y., et al: ‘A survey of fault detection, isolation, and reconfiguration methods’, IEEE Trans. Control Syst. Technol., 2010, 18, (3), pp. 636653.
    21. 21)
      • 8. BoSkovi, J., Mehra, R.: ‘Stable multiple model adaptive flight control for accommodation of a large class of control effector failures’. Proc. Int. Conf. 1999 American Control Conf., San Diego, CA, USA, June 1999, pp. 19201924.
    22. 22)
      • 21. Zhao, J., Jiang, B., Chowdhury, F., et al: ‘Active fault-tolerant control for near space vehicles based on reference model adaptive sliding mode scheme’, Int. J. Adapt. Control Signal Process., 2014, 28, (9), pp. 765777.
    23. 23)
      • 15. Khomfoi, S., Tolbert, L.: ‘Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 29542968.
    24. 24)
      • 10. Zhang, X., Parisini, T., Polycarpou, M.: ‘Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach’, IEEE Trans. Autom. Control, 2004, 49, (8), pp. 12591274.
    25. 25)
      • 9. Diao, Y., Passino, K.: ‘Intelligent fault-tolerant control using adaptive and learning methods’, Control Eng. Pract., 2002, 10, (8), pp. 801817.
    26. 26)
      • 1. Harris, T., Seppala, C., Desborough, L.: ‘A review of performance monitoring and assessment techniques for univariate and multivariate control systems’, J. Process Control, 1999, 9, (1), pp. 117.
    27. 27)
      • 38. Abu-Khalaf, M., Lewis, F.: ‘Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach’, Automatica, 2005, 41, (5), pp. 779791.
    28. 28)
      • 37. Zhang, H., Liu, D., Luo, Y., et al: ‘Adaptive dynamic programming for control: algorithms and stability’ (Springer Science & Business Media, 2012).
    29. 29)
      • 43. Yen, G., DeLima, P.: ‘Improving the performance of globalized dual heuristic programming for fault tolerant control through an online learning supervisor’, IEEE Trans. Autom. Sci. Eng., 2005, 2, (2), pp. 121131.
    30. 30)
      • 32. Al-Tamimi, A., Lewis, F., Abu-Khalaf, M.: ‘Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof’, IEEE Trans. Syst. Man Cybern. B Cybern., 2008, 38, (4), pp. 943949.
    31. 31)
      • 35. Liu, D., Wei, Q.: ‘Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (3), pp. 621634.
    32. 32)
      • 34. Zhang, H., Wei, Q., Luo, Y.: ‘A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm’, IEEE Trans. Syst. Man Cybern. B Cybern., 2008, 38, (4), pp. 937942.
    33. 33)
      • 13. Gao, Z., Antsaklis, P.: ‘Stability of the pseudo-inverse method for reconfigurable control systems’, Int. J. Control, 1991, 53, (3), pp. 717729.
    34. 34)
      • 29. Yang, X., Liu, D., Wang, D.: ‘Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints’, Int. J. Control, 2014, 87, (3), pp. 553566.
    35. 35)
      • 26. Werbos, P.: ‘A menu of designs for reinforcement learning over time’, In Miller, W., Sutton, R., Werbos, P., (Eds), Neural Netw. Control, (MIT Press, Cambridge, MA., 1990), pp. 6795.
    36. 36)
      • 41. He, Q., Shayman, M.: ‘Using reinforcement learning for pro-active network fault management’. Proc. Int. Conf. Communication Technology, 2000, vol. 1, pp. 515521.
    37. 37)
      • 5. Zhang, Y., Jiang, J.: ‘Bibliographical review on reconfigurable fault-tolerant control systems’, Annu. Rev. Control, 2008, 32, (2), pp. 229252.
    38. 38)
      • 27. Zhang, H., Wang, Z., Liu, D.: ‘Global asymptotic stability of recurrent neural networks with multiple time-varying delays’, IEEE Trans. Neural Netw., 2008, 19, (5), pp. 855873.
    39. 39)
      • 39. Wang, L., Mo, S., Zhou, D., et al: ‘Robust delay dependent iterative learning fault-tolerant control for batch processes with state delay and actuator failures’, J. Process Control, 2012, 22, (7), pp. 12731286.
    40. 40)
      • 36. Murray, J., Cox, C., Lendaris, G., et al: ‘Adaptive dynamic programming’, IEEE Trans. Syst. Man Cybern. C, 2002, 32, (2), pp. 140153.
    41. 41)
      • 25. Wang, W., Wen, C.: ‘Adaptive compensation for infinite number of actuator failures or faults’, Automatica, 2011, 47, (10), pp. 21972210.
    42. 42)
      • 22. Nazari, R., Seron, M., De Don, J.: ‘Fault-tolerant control of systems with convex polytopic linear parameter varying model uncertainty using virtual-sensor-based controller reconfiguration’, Annu. Rev. Control, 2013, 37, (1), pp. 146153.
    43. 43)
      • 42. Zhu, Q., Yuan, C.: ‘A reinforcement learning approach to automatic error recovery’, Proc. 37th Annual IEEE/IFIP Int. Conf. Dependable Systems and Networks, Edinburgh, United Kingdom, June 2007, pp. 729738.
    44. 44)
      • 2. Zhou, K., Ren, Z.: ‘A new controller architecture for high performance, robust, and fault-tolerant control’, IEEE Trans. Autom. Control, 2001, 46, (10), pp. 16131618.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1105
Loading

Related content

content/journals/10.1049/iet-cta.2015.1105
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address