http://iet.metastore.ingenta.com
1887

UKF-based adaptive variable structure observer for vehicle sideslip with dynamic correction

UKF-based adaptive variable structure observer for vehicle sideslip with dynamic correction

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Knowing vehicle sideslip angle is important and useful in various vehicle active safety applications. However, equipment which could directly measure sideslip angle is usually too expensive for industrial applications, so a reliable, affordable sideslip angle observer is necessary. Model-based observer is affected by the model uncertainty, non-linearity and the road friction inaccuracy. Sensor-based observer might be easily affected by the sensor noise and the bias induced by the road micro-uneven. Thus, an unscented Kalman filter (UKF)-based adaptive variable structural observer with dynamic correction (AUKF) for vehicle body sideslip angle is brought forward in this study. First, an UKF observer with adaptive parameters is used to compensate the model uncertainty. Then, a sensor-based observer is applied to realise a variable structure observer to compensate the estimation error in the highly non-linear region. A pseudointegral method and a zero point reset method are adopted to dynamically correct the bias drift problem in the integral. Both simulations and real vehicle tests validated the proposed approach. The accurate vehicle sideslip angle is measured by a differential global positioning system. Results show that the proposed approach has better performance compared with traditional UKF method, and makes a good foundation for stability control.

References

    1. 1)
      • 1. Dang, J.N.: ‘Statistical analysis of the effectiveness of electronic stability control (ESC) systems – final report’. US Federal Docket NHTSA–2007–28629–0002, Report Number DOT HS 810 794, 2007.
    2. 2)
      • 2. Van Zanten, A.T.: ‘Bosch ESP systems: 5 years of experience’. No. 2000-01-1633, SAE Technical Paper, January 2000.
    3. 3)
      • 3. Pacejka, H.: ‘Tire and vehicle dynamics’ (Elsevier, Amsterdam, Holland, 2005).
    4. 4)
      • 4. Yoon, J.H., Peng, H.: ‘A cost-effective sideslip estimation method using velocity measurements from two GPS receivers’, IEEE Trans. Veh. Technol., 2014, 63, (6), pp. 25892599.
    5. 5)
      • 5. Piyabongkarn, D., Rajamani, R., Grogg, J.A., et al: ‘Development and experimental evaluation of a slip angle estimator for vehicle stability control’, IEEE Trans. Control Syst. Technol., 2009, 17, (1), pp. 2888.
    6. 6)
      • 6. Nam, K., Fujimoto, H., Hori, Y.: ‘Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors’, IEEE Trans. Veh. Technol., 2012, 61, (5), pp. 19721985.
    7. 7)
      • 7. Cheli, F., Sabbioni, E., Pesce, M., et al: ‘A methodology for vehicle sideslip angle identification: comparison with experimental data’, Veh. Syst. Dyn., 2007, 45, (6), pp. 549563.
    8. 8)
      • 8. Stephant, J., Charara, A., Meizel, D.: ‘Evaluation of a sliding mode observer for vehicle sideslip angle’, Control Eng. Pract., 2007, 15, (7), pp. 803812.
    9. 9)
      • 9. Hongyan, G., Chen, H., Cao, D., et al: ‘Design of a reduced-order non-linear observer for vehicle velocities estimation’, IET Control Theory Appl., 2013, 7, (17), pp. 20562068.
    10. 10)
      • 10. Jia, G., Li, L., Cao, D.: ‘Model-based estimation for vehicle dynamics states at the limit handling’, J. Dyn. Syst., Meas. Control, 2015, 137, (10), p. 104501.
    11. 11)
      • 11. Alamdari, A., Sovizi, J., Krovi, V.N.: ‘Enhanced full-state estimation and dynamic-model-based prediction for road-vehicles’. ASME 2014 Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf.., 2014, p. V003T01A018.
    12. 12)
      • 12. Gadola, M., Chindamo, D., Romano, M., et al: ‘Development and validation of a Kalman filter-based model for vehicle slip angle estimation’, Veh. Syst. Dyn., 2014, 52, (1), pp. 6884.
    13. 13)
      • 13. Solmaz, S., Başlam¸şļ, S.C.: ‘Simultaneous estimation of road friction and sideslip angle based on switched multiple non-linear observers’, IET Control Theory Appl., 2012, 6, (14), pp. 22352247.
    14. 14)
      • 14. Rezaeian, A., Zarringhalam, R., Fallah, S., et al: ‘Novel tire force estimation strategy for real-time implementation on vehicle applications’, IEEE Trans. Veh. Technol., 2014, PP, (99), pp. 110.
    15. 15)
      • 15. Nishio, A., Tozu, K., Yamaguchi, H., et al: ‘Development of vehicle stability control system based on vehicle sideslip angle estimation’. SAE Technical Paper, 2001-01-0137, 2001.
    16. 16)
      • 16. Zhang, H., Huang, X., Wang, J., et al: ‘Robust energy-to-peak sideslip angle estimation with applications to ground vehicles’, Mechatronics, 2015, 30: 338347.
    17. 17)
      • 17. Boada, B.L., Boada, M.J.L., Diaz, V.: ‘Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an unscented Kalman filter algorithm’, Mech. Syst. Signal Process., 2016, 72, pp. 832845.
    18. 18)
      • 18. Saadeddin, K., Abdel-Hafez, M.F., Jaradat, M.A., et al: ‘Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS’, Mech. Syst. Signal Process., 2013, 41, (1), pp. 239253.
    19. 19)
      • 19. Chen, B.C., Hsieh, F.C.: ‘Sideslip angle estimation using extended Kalman filter’, Veh. Syst. Dyn., 2008, 46, (S1), pp. 353364.
    20. 20)
      • 20. Li, L., Jia, G., Ran, X., et al: ‘A variable structure extended Kalman filter for vehicle sideslip angle estimation on a low friction road’, Veh. Syst. Dyn., 2014, 52, (2), pp. 280308.
    21. 21)
      • 21. Nam, K., Oh, S., Fujimoto, H., et al: ‘Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches’, IEEE Trans. Ind. Electron. , 2013, 60, (3), pp. 9881000.
    22. 22)
      • 22. Simon, D.: ‘Optimal state estimation: Kalman, H infinity, and nonlinear approaches’ (John Wiley & Sons, Hoboken, NJ, USA, 2006).
    23. 23)
      • 23. St-Pierre, M., Gingras, D.: ‘Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system’. Intelligent Vehicles Symp., 2004 IEEE, 14–17 June 2004, pp. 831835.
    24. 24)
      • 24. Doumiati, M., Victorino, A.C., Charara, A., et al: ‘Onboard real-time estimation of vehicle lateral tire–road forces and sideslip angle’, IEEE/ASME Trans. Mechatronics, 2011, 16, (4), pp. 601614.
    25. 25)
      • 25. Julier, S.J.: ‘The scaled unscented transformation’. American Control Conf., 2002. Proc. of the 2002, 2002, vol. 6, pp. 45554559.
    26. 26)
      • 26. Haijun, S., Karlgaard Christopher, D.: ‘Sensitivity reduction of unscented Kalman filter about parameter uncertainties’, IET Radar Sonar Navig., 2014, 9, (4), pp. 374383.
    27. 27)
      • 27. Wei, L., Deren, G., Meihong, L.: ‘Adaptive robust Kalman filter for relative navigation using global position system’, IET Radar Sonar Navig., 2013, 7, (5), pp. 471479.
    28. 28)
      • 28. Yoon, J.H., Peng, H.: ‘Robust vehicle sideslip angle estimation through a disturbance rejection filter that integrates a magnetometer With GPS’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 191204.
    29. 29)
      • 29. Morrison, G., Cebon, D.: ‘Sideslip estimation for articulated heavy vehicles in low friction conditions’. Intelligent Vehicles Symp. (IV), 2015 IEEE, 2015, pp. 6570.
    30. 30)
      • 30. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: ‘A new approach for filtering nonlinear systems’. American Control Conf., Proc. of the 1995, 1995, vol. 3, pp. 16281632.
    31. 31)
      • 31. Julier, S.J., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’, Proc. IEEE, 2004, 92, (3), pp. 401422.
    32. 32)
      • 32. Li, L., Song, J., Li, H., et al: ‘A variable structure adaptive extended Kalman filter for vehicle slip angle estimation’, Int. J. Veh. Des., 2011, 56, (1), pp. 161185.
    33. 33)
      • 33. Fukada, Y.: ‘Slip-angle estimation for vehicle stability control’, Veh. Syst. Dyn., 1999, 32, (4–5), pp. 375388.
    34. 34)
      • 34. Xiong, K., Zhang, H.Y., Chan, C.W.: ‘Performance evaluation of UKF-based nonlinear filtering’, Automatica, 2006, 42, (2), pp. 261270.
    35. 35)
      • 35. Xiong, K., Zhang, H.Y., Chan, C.W.: ‘Author's reply to ‘comments on ‘performance evaluation of UKF-based nonlinear filtering’’’, Automatica, 2007, 43, (3), pp. 569570.
    36. 36)
      • 36. Xiong, K., Liu, L.D., Zhang, H.Y.: ‘Modified unscented Kalman filtering and its application in autonomous satellite navigation’, Aerosp. Sci. Technol., 2009, 13, (4), pp. 238246.
    37. 37)
      • 37. Boutayeb, M., Aubry, D.: ‘A strong tracking extended Kalman observer for nonlinear discrete-time systems’, IEEE Trans. Autom. Control, 1999, 44, (8), pp. 15501556.
    38. 38)
      • 38. Solmaz, S., Başlamışlı, S.Ç.: ‘Simultaneous estimation of road friction and sideslip angle based on switched multiple non-linear observers’, IET Control Theory Appl., 2012, 6, (14), pp. 20352047.
    39. 39)
      • 39. Li, L., Ran, X., Wu, K., et al: ‘A novel fuzzy logic correctional algorithm for traction control systems on uneven low-friction road conditions’, Veh. Syst. Dyn., 2015, 53, (6), pp. 711733.
    40. 40)
      • 40. Li, L., Song, J., Li, H.-Z., et al: ‘Comprehensive prediction method of road friction for vehicle dynamics control’, Proc. Inst. Mech. Eng. D, J. Autom. Eng., 2009, 223, (8), pp. 9871002.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1030
Loading

Related content

content/journals/10.1049/iet-cta.2015.1030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address