http://iet.metastore.ingenta.com
1887

Distributed model predictive control for load frequency control with dynamic fuzzy valve position modelling for hydro–thermal power system

Distributed model predictive control for load frequency control with dynamic fuzzy valve position modelling for hydro–thermal power system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Reliable load frequency control (LFC) is very important for a modern power system with multi-source power generation and has been the primary focus of studies on advanced control theory and applications. In the LFC of a power system, the generation rate constraints (GRC) and position limit of the governor valve present major challenges to the control scheme because they significantly affect the dynamic responses of the system, resulting in larger overshoot and longer settling time. Model predictive control (MPC) is an attractive control strategy that systematically considers the constraints on the process inputs, states, and outputs. It is employed in LFC to cope with the GRC problem. This study proposes a distributed MPC (DMPC) for a four-area hydro–thermal interconnected power system. In the proposed scheme, the limit position of the governor valve is modelled by a fuzzy model and the local predictive controllers are incorporated into the non-linear control system. The effectiveness of the proposed non-linear constraint DMPC was demonstrated by simulations.

References

    1. 1)
      • 1. Geromel, J.C., Peres, P.L.D.: ‘Decentralised load-frequency control’, IEE Proc. D, Control Theory Appl., 1985, 132, (5), pp. 225230.
    2. 2)
      • 2. Farahani, M., Ganjefar, S., Alizadeh, M.: ‘PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control’, IET Control Theory Appl., 2012, 6, (13), pp. 19841992.
    3. 3)
      • 3. Hasan, N., Ibraheem, K., Kumar, P.: ‘Optimal automatic generation control of interconnected power system considering new structures of matrix Q’, Elect. Power Compon. Syst., 2013, 41, (2), pp. 136156.
    4. 4)
      • 4. Yamashita, K., Miyagi, H.: ‘Multivariable self-tuning regulator for load frequency control system with interaction of voltage on load demand’, IEE Proc. D, Control Theory Appl., 1991, 138, (2), pp. 177183.
    5. 5)
      • 5. Vrdoljak, K., Peric, N., Petrovic, I.: ‘Sliding mode based load-frequency control in power systems’, Electr. Power Syst. Res., 2010, 80, (5), pp. 514527.
    6. 6)
      • 6. Rahmani, M., Sadati, N.: ‘Hierarchical optimal robust load-frequency control for power systems’, IET Gener. Transm. Distrib., 2012, 6, (4), pp. 303312.
    7. 7)
      • 7. Daneshfar, F.: ‘Intelligent load-frequency control in a deregulated environment: continuous-valued input, extended classifier system approach’, IET Gener. Transm. Distrib., 2013, 7, (6), pp. 551559.
    8. 8)
      • 8. Sahu, B.K., Pati, S., Panda, S.: ‘Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system’, IET Gener. Transm. Distrib., 2014, 8, (11), pp. 17891800.
    9. 9)
      • 9. Wang, Z.W., Wang, X.D., Liu, L.H., et al: ‘Optimal state feedback control for wireless networked control systems with decentralised controllers’, IET Control Theory Appl., 2015, 9, (6), pp. 852862.
    10. 10)
      • 10. Pandey, S.K., Mohanty, S.R., Kishor, N.: ‘A literature survey on load of frequency control for conventional and distribution generation power systems’, Renew. Sustain. Energy Rev., 2013, 25, pp. 318334.
    11. 11)
      • 11. Zheng, Y., Qiu, H., Li, S.: ‘Networked coordination-based distributed model predictive control for large-scale system’, IEEE Trans. Control Syst. Technol., 2013, 21, (3), pp. 991998.
    12. 12)
      • 12. Qin, S.J., Badgwell, T.A.: ‘A survey of industrial model predictive control technology’, Control Eng. Pract., 2003, 11, (7), pp. 733764.
    13. 13)
      • 13. Prasad, G., Swidenbank, E., Hogg, B.W.: ‘A neural net model-based multivariable long-range predictive control strategy applied in thermal power plant control’, IEEE Trans. Energy Convers., 1998, 13, (2), pp. 176182.
    14. 14)
      • 14. Liu, X.J., Guan, P., Chan, C.W.: ‘Nonlinear multivariable power plant coordinate control by constrained predictive scheme’, IEEE Trans. Control Syst. Technol., 2010, 18, (5), pp. 11161125.
    15. 15)
      • 15. Liu, X.J., Chan, C.: ‘Neuro-fuzzy generalized predictive control of boiler steam temperature’, IEEE Trans. Energy Convers., 2006, 21, (4), pp. 9009008.
    16. 16)
      • 16. Liu, X.J., Kong, X.B.: ‘Nonlinear fuzzy model predictive iterative learning control for drum-type boiler–turbine system’, J. Process Control, 2013, 23, (8), pp. 10231040.
    17. 17)
      • 17. Zhou, L.F., Li, S.Y.: ‘Distributed model predictive control for consensus of sampled-data multi-agent systems with double-integrator dynamics’, IET Control Theory Appl., 2015, 9, (12), pp. 17741780.
    18. 18)
      • 18. Zhou, X.J., Li, C.J., Huang, T.W., et al: ‘Fast gradient-based distributed optimisation approach for model predictive control and application in four-tank benchmark’, IET Control Theory Appl., 2015, 9, (10), pp. 15791586.
    19. 19)
      • 19. Giovanini, L.: ‘Game approach to distributed model predictive control’, IET Control Theory Appl., 2011, 5, (15), pp. 17291739.
    20. 20)
      • 20. Song, Y., Fang, X.S.: ‘Distributed model predictive control for polytopic uncertain systems with randomly occurring actuator saturation and packet loss’, IET Control Theory Appl., 2014, 8, (5), pp. 297310.
    21. 21)
      • 21. Hashimoto, K., Adachi, S., Dimarogonas, D.V.: ‘Distributed aperiodic model predictive control for multi-agent systems’, IET Control Theory Appl., 2015, 9, (1), pp. 1020.
    22. 22)
      • 22. Christofides, P.D., Scattolini, R., Munoz de la Pena, D., et al: ‘Distributed model predictive control: a tutorial review and future research directions’, Comput. Chem. Eng., 2013, 51, (5), pp. 2124.
    23. 23)
      • 23. Lee, K.Y., Belbachir, M.: ‘A decentralized plant controller for automatic generation and voltage regulation’, J. Electr. Power Syst. Res., 1982, 5, (1), pp. 4151.
    24. 24)
      • 24. Venkat, A.N., Hiskens, I.A., Rawlings, J.B., et al: ‘Distributed MPC strategies with application to power system automatic generation control’, IEEE Trans. Control Syst. Technol., 2008, 16, (6), pp. 11921206.
    25. 25)
      • 25. Mohamed, T.H., Bevrani, H., Hassan, A.A., et al: ‘Decentralized model predictive based load frequency control in an interconnected power system’, Energy Convers. Manag., 2011, 52, (2), pp. 12081214.
    26. 26)
      • 26. Slotine, J.E.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, 1991).
    27. 27)
      • 27. Lee, H.J., Park, J.B., Joo, Y.H.: ‘Robust load-frequency control for uncertain nonlinear power systems: a fuzzy logic approach’, Inf. Sci., 2006, 176, (23), pp. 227231.
    28. 28)
      • 28. Shayeghi, H., Shayanfar, H.A.: ‘Application of ANN technique based on μ-synthesis to load frequency control of interconnected power system’, Int. J. Electr. Power Energy Syst., 2006, 28, (7), pp. 503511.
    29. 29)
      • 29. Panda, G., Panda, S., Ardil, C.: ‘Automatic generation control of interconnected power system with generation rate constraints by hybrid neuro fuzzy approach’, Int. J. Electr. Robot. Electron. Commun. Eng., 2012, 6, (4), pp. 2732.
    30. 30)
      • 30. Liu, X., Zhan, X., Qian, D.: ‘Load frequency control considering generation rate constraints’. Proc. of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 2010, pp. 13941401.
    31. 31)
      • 31. Rerkpreedapong, D., Atic, N., Feliachi, A.: ‘Economy oriented model predictive load frequency control’. 2003 Large Engineering Systems Conf. on Power Engineering, Montreal, Canada, 2003, pp. 1216.
    32. 32)
      • 32. Doolla, S., Bhatti, T.S.: ‘Load frequency control of an isolated small-hydro power plant with reduced dump load’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 19121919.
    33. 33)
      • 33. Zhao, Y., Chen, X., Jia, Q., et al: ‘Long-term scheduling for cascaded hydro energy systems with annual water consumption and release constraints’, IEEE Trans. Autom. Sci. Eng., 2010, 7, (4), pp. 969976.
    34. 34)
      • 34. Liu, X., Kong, X., Deng, X.: ‘Power system model predictive load frequency control’. Proc. of the American Control Conf., Montreal, Canada, 27–29 June 2012, pp. 66026607.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.1021
Loading

Related content

content/journals/10.1049/iet-cta.2015.1021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address