access icon free Continuous finite-time output consensus tracking of high-order agents with matched and unmatched disturbances

Finite-time output consensus tracking problem of n-order multi-agent systems (MAS) with matched and unmatched disturbances is investigated in this study. First, a distributed protocol is given for the nominal MAS to achieve finite-time consensus tracking. Second, the unmatched disturbances in every follower are converted to the matched ones through a state transformation, and a finite-time disturbance observer is utilised to estimate its disturbances and their derivatives up to the (n − l)-order (1 ≤ l ≤ n) subject to the bounded (n − l + 1)-order derivatives. Finally, the combined observer-based protocol achieves the finite-time output consensus tracking in spite of all the disturbances. Finally, simulation results validate the scheme.

Inspec keywords: mobile robots; graph theory; multi-robot systems; observers

Other keywords: high-order agents; matched disturbances; unmatched disturbances; continuous finite-time output consensus tracking; MAS; multiagent systems; distributed protocol; finite-time disturbance observer; state transformation; disturbance estimation; combined observer-based protocol

Subjects: Combinatorial mathematics; Mobile robots; Simulation, modelling and identification

References

    1. 1)
      • 1. Cao, Y., Yu, W., Ren, W., Chen, G.: ‘An overview of recent progress in the study of distributed multi-agent coordination’, IEEE Trans. Ind. Inf., 2013, 9, (1), pp. 427438.
    2. 2)
      • 42. Li, S., Sun, H., Yang, J., et al: ‘Continuous finite-time output regulation for disturbed systems under mismatching condition’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 277282.
    3. 3)
      • 15. Wang, L., Xiao, F.: ‘Finite-time consensus problems for networks of dynamic agents’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 950955.
    4. 4)
      • 12. Khoo, S., Xie, L., Man, Z.: ‘Robust finite-time consensus tracking algorithm for multirobot systems’, IEEE/ASME Trans. Mechatronics, 2009, 14, (2), pp. 219228.
    5. 5)
      • 18. Xiao, F., Wang, L., Chen, T.: ‘Finite-time consensus in networks of integrator-like dynamic agents with directional link failure’, IEEE Trans. Autom. Control, 2014, 59, (3), pp. 756762.
    6. 6)
      • 9. Cortes, J.: ‘Finite-time convergent gradient flows with applications to network consensus’, Automatica, 2006, 42, (11), pp. 19932000.
    7. 7)
      • 10. Hui, Q.: ‘Finite-time rendezvous algorithms for mobile autonomous agents’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 207211.
    8. 8)
      • 22. Lu, Q., Han, Q., Liu, S.: ‘A finite-time particle swarm optimization algorithm for odor source localization’, Int. J. Control, 2014, 277, pp. 111140.
    9. 9)
      • 40. Bhat, S.P., Bernstein, D.S.: ‘Geometric homogeneity with applications to finite-time stability’, Math. Control Signals Syst., 2005, 17, (2), pp. 101127.
    10. 10)
      • 25. Cao, Y., Ren, W., Meng, Z.: ‘Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking’, Syst. Control Lett., 2010, 59, (9), pp. 522529.
    11. 11)
      • 27. Du, H., He, Y., Cheng, Y.: ‘Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (6), pp. 17781788.
    12. 12)
      • 36. Zhou, Y., Yu, X., Sun, C., et al: ‘Higher order finite-time consensus protocol for heterogeneous multi-agent systems’, Int. J. Control, 2015, 88, (2), pp. 285294.
    13. 13)
      • 32. Hong, Y., Xu, Y., Huang, J.: ‘Finite-time control for robot manipulators’, Syst. Control Lett., 2002, 46, (4), pp. 243253.
    14. 14)
      • 6. Yu, S., Yu, X., Shirinzadeh, B., et al: ‘Continuous finite-time control for robotic manipulators with terminal sliding mode’, Automatica, 2005, 41, (11), pp. 19571964.
    15. 15)
      • 33. Moreno, J.A., Osorio, M.: ‘Strict Lyapunov functions for the supertwisting algorithm’, IEEE Trans. Autom. Control, 2012, 57, (4), pp. 10351040.
    16. 16)
      • 8. Li, C., Qu, Z.: ‘Distributed finite-time consensus of nonlinear systems under switching topologies’, Automatica, 2014, 50, (6), pp. 16261631.
    17. 17)
      • 41. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: ‘Smooth second-order sliding modes: missile guidance application’, Automatica, 2007, 43, (8), pp. 14701476.
    18. 18)
      • 14. Ghasemi, M., Nersesov, S.: ‘Finite-time coordination in multi-agent systems using sliding mode control approach’, Automatica, 2014, 50, (4), pp. 12091216.
    19. 19)
      • 3. He, W., Chen, G., Han, Q., et al: ‘Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control’, Inf. Sci., 2015.
    20. 20)
      • 31. Du, H., Li, S., Qian, C.: ‘Finite-time attitude tracking control of spacecraft with application to attitude synchronization’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 27112717.
    21. 21)
      • 26. Li, S., Wang, X.: ‘Finite-time consensus and collision avoidance control algorithms for multiple AUVs’, Automatica, 2013, 49, (11), pp. 33593367.
    22. 22)
      • 35. Yu, H., Shen, Y., Xia, X.: ‘Adaptive finite-time consensus in multi-agent networks’, Syst. Control Lett., 2013, 62, (10), pp. 880889.
    23. 23)
      • 38. Shen, Q., Shi, P.: ‘Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict feedback form’, Automatica, 2015, 53, pp. 120124.
    24. 24)
      • 37. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, 2002, 3rd edn.).
    25. 25)
      • 30. Li, S., Du, H., Lin, X.: ‘Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics’, Automatica, 2011, 47, (8), pp. 17061712.
    26. 26)
      • 11. Chen, G., Lewis, F.L., Xie, L.: ‘Finite-time distributed consensus via binary control protocols’, Automatica, 2011, 47, (9), pp. 19621968.
    27. 27)
      • 29. Huang, J., Wen, C., Wang, W., et al: ‘Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems’, Automatica, 2015, 51, pp. 292301.
    28. 28)
      • 43. Buskes, G., Vn Rooij, A.: ‘Almost f-algebras: commutativity and the Cauchy–Schwarz inequality’ (Kluwer Academic, Netherlands, 2000).
    29. 29)
      • 19. Cao, Y., Ren, W.: ‘Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics’, Automatica, 2014, 50, (10), pp. 26482656.
    30. 30)
      • 34. Yu, S., Long, X.: ‘Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode’, Automatica, 2015, 54, pp. 158165.
    31. 31)
      • 7. Franceschelli, M., Giua, A., Pisano, A., et al: ‘Finite-time consensus with disturbance rejection by discontinuous local interactions in directed graphs’, IEEE Trans. Autom. Control, 2015, 60, (4), pp. 11331138.
    32. 32)
      • 28. Lu, X., Chen, S., Lü, J.: ‘Finite-time tracking for double-integrator multi-agent systems with bounded control input’, IET Control Theory Appl., 2013, 7, (11), pp. 15621573.
    33. 33)
      • 2. Olfati-Saber, R., Fax, A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    34. 34)
      • 17. Lu, X., Lu, R., Chen, S., et al: ‘Finite-time distributed tracking control for multi-agent systems with a virtual leader’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (2), pp. 352362.
    35. 35)
      • 5. Ding, L., Han, Q., Guo, G.: ‘Network-based leader-following consensus for distributed multi-agent systems’, Automatica, 2013, 49, (7), pp. 22812286.
    36. 36)
      • 23. Guan, Z., Sun, F., Wang, Y., et al: ‘Finite-time consensus for leader-following second-order multi-agent networks’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (11), pp. 26462654.
    37. 37)
      • 13. Meng, Z., Ren, W., You, Z.: ‘Distributed finite-time attitude containment control for multiple rigid bodies’, Automatica, 2010, 46, (12), pp. 20922099.
    38. 38)
      • 39. Wang, W., Huang, J., Wen, C., et al: ‘Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots’, Automatica, 2014, 50, (4), pp. 12541263.
    39. 39)
      • 24. Zhao, Y., Duan, Z., Wen, G., et al: ‘Distributed finite-time tracking control for multi-agent systems: an observer-based approach’, Syst. Control Lett., 2013, 62, (1), pp. 2228.
    40. 40)
      • 21. Lu, Q., Han, Q., Xie, X., et al: ‘A finite-time motion control strategy for odor source localization’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 54195430.
    41. 41)
      • 20. Liu, H., Cheng, L., Tan, M., et al: ‘Distributed exponential finite-time coordination of multi-agent systems: containment control and consensus’, Int. J. Control, 2015, 88, (2), pp. 237247.
    42. 42)
      • 4. Guo, G., Ding, L., Han, Q.: ‘A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems’, Automatica, 2014, 50, (5), pp. 14891496.
    43. 43)
      • 16. Hui, Q., Haddad, W.M., Bhat, S.P.: ‘Finite-time semistability and consensus for nonlinear dynamical networks’, IEEE Trans. Autom. Control, 2008, 53, (8), pp. 18871890.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0924
Loading

Related content

content/journals/10.1049/iet-cta.2015.0924
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading