access icon free Controller synthesis for negative imaginary systems: a data driven approach

The negative imaginary (NI) property occurs in many important applications. For instance, flexible structure systems with collocated force actuators and position sensors can be modelled as negative imaginary systems. In this study, a data-driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller response is used to identify the controller transfer function using system identification methods.

Inspec keywords: flexible structures; actuators; control system synthesis; force sensors; transfer functions; minimisation; identification; frequency response

Other keywords: negative imaginary systems; data-driven controller synthesis methodology; data driven approach; controller transfer function; flexible structure systems; position sensors; controller frequency response; controller synthesis; frequency response data; collocated force actuators; NI property; system identification methods

Subjects: Control system analysis and synthesis methods; Actuating and final control devices; Optimisation techniques; Multivariable control systems; Simulation, modelling and identification; Distributed parameter control systems

References

    1. 1)
    2. 2)
    3. 3)
      • 44. Padthe, A.K., Oh, J.H., Bernstein, D.S.: ‘Counterclockwise dynamics of a rate-independent semilinear Duhem model’, Proc. 44th IEEE Conf. on Decision and Control, Seville, Spain, 2005, pp. 80008005.
    4. 4)
    5. 5)
      • 20. Michellod, Y., Mullhaupt, P., Gillet, D.: ‘Strategy for the control of a dual-stage nano-positioning system with a single metrology’, Proc. IEEE Conf. Robotics, Automation and Mechatronics, Bangkok, 2006, pp. 18.
    6. 6)
    7. 7)
      • 2. Bazanella, A.S., Campestrini, L., Eckhard, D.: ‘Data-driven controller design: the H2 approach’ (Springer, Netherlands, 2012).
    8. 8)
    9. 9)
      • 16. Dong, J., Salapaka, S.M., Ferreira, P.M.: ‘Robust MIMO control of a parallel kinematics nano-positioner for high resolution high bandwidth tracking and repetitive tasks’, Proc. 46th IEEE Conf. Decision and Control, New Orleans, LA, 2007, pp. 44954500.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 9. Preumont, A.: ‘Vibration control of active structures’ (Kluwer, Norwell, MA, 2002).
    14. 14)
      • 45. Lanzon, A., Petersen, I.R.: ‘A modified positive-real type stability condition’, Proc. of the European Control Conf., Kos, Greece, 2007, pp. 39123918.
    15. 15)
      • 6. Preumont, A.: ‘Vibration control of active structures: an introduction’ (Springer, 2011).
    16. 16)
    17. 17)
      • 48. Lanzon, A., Song, Z., Patra, S.,, et al: ‘A strongly strict negative-imaginary lemma for non-minimal linear systems’, Commun. Inf. Syst., 2011, 11, (2), pp. 139152.
    18. 18)
    19. 19)
    20. 20)
      • 14. Bhikkaji, B., Moheimani, S.: ‘Fast scanning using piezoelectric tube nanopositioners: a negative imaginary approach’, Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics AIM, Singapore, 2009, pp. 274279.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 11. Mabrok, M.A., Petersen, I.: ‘Data driven controller synthesis for negative imaginary systems’, The 10th Asian Control Conf., 2015.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 4. van Helvoort, J.J.M.: ‘Unfalsified control: data-driven control design for performance improvement’, PhD thesis, PhD dissertation, Mech. Eng. Dept., Control Syst. Technol. Group, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2007.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 19. van Hulzen, J.R., Schitter, G., Van den Hof, P.M.J., et al: ‘Modal actuation for high bandwidth nano-positioning’, Proc. American Control Conf., Baltimore, Maryland, USA, 2010, pp. 65256530.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 46. Anderson, B.D.O., Vongpanitlerd, S.: ‘Network analysis and synthesis: a modern systems approach’ (Prentice-Hall, Englewood Cliffs, NJ, USA, 1973).
    39. 39)
    40. 40)
      • 13. Harigae, M., Yamaguchi, I., Kasai, T.,, et al: ‘Control of large space structures using GPS modal parameter identification and attitude and deformation estimation’, Electron. Commun., 2003, 86, (4), p. 6371.
    41. 41)
    42. 42)
      • 47. Brogliato, B., Lozano, R., Maschke, B.,, et al: ‘Dissipative systems analysis and control’ Communications and Control Engineering, (Springer, London, UK, 2007, 2nd edn.).
    43. 43)
      • 23. El Rifai, K., El Rifai, O., Youcef-Toumi, K.: ‘On dual actuation in atomic force microscopes’. Proc. American Control Conf., 2004, vol. 4, pp. 31283133.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • 32. van der Schaft, A.J.: ‘Positive feedback interconnection of Hamiltonian systems’, Proc. of the 50th IEEE Conf. on Decision and Control and European Control Conf. (CDC-ECC), Orlando, FL, USA, 2011.
    48. 48)
    49. 49)
      • 49. Mabrok, M., Dong, D., Chen, C.,, et al: ‘Robust entanglement control between two atoms in a cavity using sampling-based learning control’, Decision and Control (CDC), 2014 IEEE 53rd Annual Conf. on, 2014, pp. 58025807.Available: at http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7040297.
    50. 50)
    51. 51)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0800
Loading

Related content

content/journals/10.1049/iet-cta.2015.0800
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading