access icon free Polynomial matrix approach to tracking control of non-linear systems

To characterise complete controllability of a time-varying linearised error system of a given non-linear system, this study focuses the attention on hyper-regularity of a polynomial matrix derived from the non-linear system and introduces the concept called controllable trajectory. It is shown that if a polynomial matrix derived from a given non-linear system is hyper-regular, then every linearised system along any controllable trajectory is completely controllable. Through a non-holonomic mobile robot example, it is demonstrated that if a polynomial matrix derived from a given non-linear system is hyper-regular, and if a reference trajectory is the state part of a periodic controllable trajectory, a trajectory tracking control is achieved by a two-degree-of-freedom controller design method.

Inspec keywords: linear systems; polynomial matrices; time-varying systems; mobile robots; trajectory control; controllability; nonlinear control systems

Other keywords: periodic controllable trajectory; trajectory tracking control; nonlinear control system; controllability; time-varying linearised error system; holonomic mobile robot; two-degree-of-freedom controller design method; polynomial matrix approach

Subjects: Linear control systems; Time-varying control systems; Algebra; Nonlinear control systems; Mobile robots; Control system analysis and synthesis methods; Spatial variables control

References

    1. 1)
      • 16. McCoy, N.H., Janusz, G.J.: ‘Introduction to modern algebra’ (Allyn and Bacon), 1987.
    2. 2)
    3. 3)
      • 2. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, 2002, 3rd edn.).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 14. Cohn, P.: ‘Free ideal rings and localization in general rings’ (Cambridge University Press), 2006.
    9. 9)
      • 8. Kalman, R.: ‘Contributions to the theory of optimal control’, Bol. Soc. Mat. Mex, 1960, 5, (1), pp. 102119.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 13. Polderman, J., Willems, J.: ‘Introduction to mathematical systems theory: a behavioral approach’ (Springer Verlag, 1998).
    16. 16)
      • 21. Morin, P., Samson, C.: ‘Trajectory tracking for non-holonomic vehicles: overview and case study’, IEEE Proc. Fourth Int. Workshop on Robot Motion and Control, 2004. RoMoCo'04, pp. 139153.
    17. 17)
    18. 18)
    19. 19)
      • 19. Stengel, R.F.: ‘Optimal control and estimation’ (Dover Publications), 1986.
    20. 20)
    21. 21)
      • 25. Sontag, E.: ‘Mathematical control theory: deterministic finite dimensional systems’, (Springer Verlag), 1998.
    22. 22)
    23. 23)
      • 20. Kanayama, Y., Kimura, Y., Miyazaki, F., et al: ‘A stable tracking control method for an autonomous mobile robot’, IEEE Int. Conf. on Robotics and Automation, pp. 384389.
    24. 24)
      • 15. Conte, G., Moog, C., Perdon, A.: ‘Algebraic methods for nonlinear control systems’, (Springer, 2007).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0765
Loading

Related content

content/journals/10.1049/iet-cta.2015.0765
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading