access icon free Vibration control strategy for large-scale structures with incomplete multi-actuator system and neighbouring state information

The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: an ideal state-feedback H controller with full access to the complete state information and two static output-feedback H controllers with restricted neighbouring state information. To assess the performance of the proposed controllers, the corresponding frequency responses are investigated and a proper set of numerical simulations are conducted, using the full scale North-South El Centro 1940 seismic record as ground acceleration input. The obtained results indicate that, despite the severe information constraints, the proposed static output-feedback controllers attain a level of seismic protection that is very similar to that achieved by the ideal state-feedback controller with complete state information.

Inspec keywords: state feedback; optimisation; vibration control; H∞ control; structural engineering; linear matrix inequalities

Other keywords: multiple actuation device; optimal controller; state-feedback H∞ controller; optimisation tool; multiactuator system; neighbouring state information; large-scale structure; seismic disturbance; static output-feedback H∞ controller; vibration control; five-story structure; standard linear matrix inequality

Subjects: Optimisation; Algebra; Control technology and theory (production); Mechanical variables control; Optimal control; Algebra; Control applications in building and civil engineering; Optimisation techniques; Building structures

References

    1. 1)
      • 2. Li, H., Huo, L.: ‘Advances in structural control in civil engineering in China’, Math. Probl. Eng., 2010, Article ID 936081, pp. 123.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. Oliveira, F., Morais, P., Suleman, A.: ‘Predictive control for earthquake response mitigation of buildings using semiactive fluid dampers’, Shock Vib., 2014, Article ID 670683, pp. 114.
    7. 7)
      • 16. Palacios-Quiñonero, F., Rubió-Massegú, J., Rossell, J.M., et al : ‘Discrete-time multioverlapping controller design for structural vibration control of tall buildings under seismic excitation’, Math. Probl. Eng., 2012, Article ID 636878, pp. 120.
    8. 8)
      • 29. Kurino, H., Matsunaga, Y., Yamada, T., et al : ‘High performance passive hydraulic damper with semi-active characteristics’, Proc. 13th World Conf. on Earthquake Engineering, Vancouver, Canada, 2004. Paper No. 33, pp. 112.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 25. Cai, M., Xiang, Z., Karimi, H.R.: ‘Robust sampled-data H control for vibration mitigation of offshore platforms with missing measurements’, Math. Probl. Eng., 2014, Article ID 914616, pp. 110.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 13. Boyd, S., Ghaoui, L.E., Feron, E., et al : ‘Linear matrix inequalities in system and control theory’ (SIAM Studies in Applied Mathematics, Philadelphia, 1994).
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 27. Chopra, A.K.: ‘Dynamics of structures. Theory and applications to earthquake engineering’ (Prentice-Hall, New Jersey, 2007, 3rd edn.).
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • 28. Balas, G.J., Chiang, R.Y., Packard, A.K., et al : ‘MATLABTM Robust control Toolbox 3. User's guide’ (MathWorks Inc., Natick, Version 4.2, 2012).
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0737
Loading

Related content

content/journals/10.1049/iet-cta.2015.0737
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading